基于DGS的物联网宽带阶梯状矩形环形微带天线设计与分析

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sonu Rana, Jyoti Verma, A. Gautam
{"title":"基于DGS的物联网宽带阶梯状矩形环形微带天线设计与分析","authors":"Sonu Rana, Jyoti Verma, A. Gautam","doi":"10.3991/ijoe.v19i09.37065","DOIUrl":null,"url":null,"abstract":"A novel miniature wideband rectangular ring antenna is proposed for 4.6–6.2 GHz which is compatible with IoT applications. The wideband response of the proposed antenna is achieved by a partial ground and stair step structure. Because modifying the width and etching the ground plane does not improve the impedance matching over a large bandwidth, a triangular shape DGS is inserted in the partial ground plane to increase the antenna bandwidth with enhanced return loss. The wideband features of the antenna were explored here by incorporating different DGS shapes such as triangles, rectangle, pentagon, circle, and oval in the partial ground. The results have been successfully verified through measurement. The simulated fractional bandwidth is greater than 29% at 4.6–6.2 GHz whereas the measured fractional bandwidth is 27.6% at 4.75–6.2 GHz. In both cases, the maximum return loss is greater than 55 dB. The gain of the antenna is greater than 2.6 dB with good efficiency and nearly omnidirectional radiation pattern in shape. Due to its compact size and outstanding performance, the suggested stair stepshaped rectangular ring antenna could be a promising choice for IoT and wireless applications.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Wideband Stair Step-Shaped Rectangular Ring Microstrip Antenna with DGS for IoT Applications\",\"authors\":\"Sonu Rana, Jyoti Verma, A. Gautam\",\"doi\":\"10.3991/ijoe.v19i09.37065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel miniature wideband rectangular ring antenna is proposed for 4.6–6.2 GHz which is compatible with IoT applications. The wideband response of the proposed antenna is achieved by a partial ground and stair step structure. Because modifying the width and etching the ground plane does not improve the impedance matching over a large bandwidth, a triangular shape DGS is inserted in the partial ground plane to increase the antenna bandwidth with enhanced return loss. The wideband features of the antenna were explored here by incorporating different DGS shapes such as triangles, rectangle, pentagon, circle, and oval in the partial ground. The results have been successfully verified through measurement. The simulated fractional bandwidth is greater than 29% at 4.6–6.2 GHz whereas the measured fractional bandwidth is 27.6% at 4.75–6.2 GHz. In both cases, the maximum return loss is greater than 55 dB. The gain of the antenna is greater than 2.6 dB with good efficiency and nearly omnidirectional radiation pattern in shape. Due to its compact size and outstanding performance, the suggested stair stepshaped rectangular ring antenna could be a promising choice for IoT and wireless applications.\",\"PeriodicalId\":36900,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v19i09.37065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i09.37065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种适用于物联网应用的4.6-6.2 GHz微型宽带矩形环形天线。该天线的宽带响应是通过部分地面和阶梯结构来实现的。由于修改宽度和蚀刻地平面并不能改善大带宽下的阻抗匹配,因此在部分地平面插入三角形DGS以增加天线带宽并增强回波损耗。本文通过在部分地面上结合不同的DGS形状(如三角形、矩形、五边形、圆形和椭圆形)来探索天线的宽带特征。结果通过实测得到了成功的验证。在4.6 ~ 6.2 GHz频段,模拟分数带宽大于29%,而在4.75 ~ 6.2 GHz频段,实测分数带宽为27.6%。在这两种情况下,最大回波损耗都大于55db。天线增益大于2.6 dB,具有良好的效率和形状上接近全向的辐射方向图。由于其紧凑的尺寸和出色的性能,建议的阶梯形矩形环形天线可能是物联网和无线应用的一个有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Analysis of Wideband Stair Step-Shaped Rectangular Ring Microstrip Antenna with DGS for IoT Applications
A novel miniature wideband rectangular ring antenna is proposed for 4.6–6.2 GHz which is compatible with IoT applications. The wideband response of the proposed antenna is achieved by a partial ground and stair step structure. Because modifying the width and etching the ground plane does not improve the impedance matching over a large bandwidth, a triangular shape DGS is inserted in the partial ground plane to increase the antenna bandwidth with enhanced return loss. The wideband features of the antenna were explored here by incorporating different DGS shapes such as triangles, rectangle, pentagon, circle, and oval in the partial ground. The results have been successfully verified through measurement. The simulated fractional bandwidth is greater than 29% at 4.6–6.2 GHz whereas the measured fractional bandwidth is 27.6% at 4.75–6.2 GHz. In both cases, the maximum return loss is greater than 55 dB. The gain of the antenna is greater than 2.6 dB with good efficiency and nearly omnidirectional radiation pattern in shape. Due to its compact size and outstanding performance, the suggested stair stepshaped rectangular ring antenna could be a promising choice for IoT and wireless applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信