𝐿^{∞}型Gagliardo-Nirenberg不等式的最佳常数

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Jian-Guo Liu, Jinhuan Wang
{"title":"𝐿^{∞}型Gagliardo-Nirenberg不等式的最佳常数","authors":"Jian-Guo Liu, Jinhuan Wang","doi":"10.1090/qam/1645","DOIUrl":null,"url":null,"abstract":"<p>In this paper we derive the best constant for the following <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-type Gagliardo-Nirenberg interpolation inequality <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar u double-vertical-bar Subscript upper L Sub Superscript normal infinity Subscript Baseline less-than-or-equal-to upper C Subscript q comma normal infinity comma p Baseline double-vertical-bar u double-vertical-bar Subscript upper L Sub Superscript q plus 1 Subscript Superscript 1 minus theta Baseline double-vertical-bar nabla u double-vertical-bar Subscript upper L Sub Superscript p Subscript Superscript theta Baseline comma theta equals StartFraction p d Over d p plus left-parenthesis p minus d right-parenthesis left-parenthesis q plus 1 right-parenthesis EndFraction comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>u</mml:mi>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>u</mml:mi>\n <mml:msubsup>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>q</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:msubsup>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"1em\" />\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mi>p</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\|u\\|_{L^{\\infty }}\\leq C_{q,\\infty ,p} \\|u\\|^{1-\\theta }_{L^{q+1}}\\|\\nabla u\\|^{\\theta }_{L^p},\\quad \\theta =\\frac {pd}{dp+(p-d)(q+1)}, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where parameters <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\n <mml:semantics>\n <mml:mi>q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfy the conditions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than d greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p>d\\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q\\geq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The best constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript q comma normal infinity comma p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_{q,\\infty ,p}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is given by <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript q comma normal infinity comma p Baseline equals theta Superscript minus StartFraction theta Over p EndFraction Baseline left-parenthesis 1 minus theta right-parenthesis Superscript StartFraction theta Over p EndFraction Baseline upper M Subscript c Superscript minus StartFraction theta Over d EndFraction Baseline comma upper M Subscript c Baseline colon-equal integral Underscript double-struck upper R Superscript d Baseline Endscripts u Subscript c comma normal infinity Superscript q plus 1 Baseline d x comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>q</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mfrac>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mi>p</mml:mi>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:msubsup>\n <mml:mi>M</mml:mi>\n <mml:mi>c</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mfrac>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:mfrac>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"1em\" />\n <mml:msub>\n <mml:mi>M</mml:mi>\n <mml:mi>c</mml:mi>\n </mml:msub>\n <mml:mo>≔</mml:mo>\n <mml:msub>\n <mml:mo>∫<!-- ∫ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n <mml:msubsup>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>c</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>q</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n <mml:mi>d</mml:mi>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} C_{q,\\infty ,p}=\\theta ^{-\\frac {\\theta }{p}}(1-\\theta )^{\\frac {\\theta }{p}}M_c^{-\\frac {\\theta }{d}},\\quad M_c≔\\int _{\\mathbb {R}^d}u_{c,\\infty }^{q+1} dx, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript c comma normal infinity\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>u</mml:mi>\n ","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The best constant for 𝐿^{∞}-type Gagliardo-Nirenberg inequalities\",\"authors\":\"Jian-Guo Liu, Jinhuan Wang\",\"doi\":\"10.1090/qam/1645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we derive the best constant for the following <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^{\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-type Gagliardo-Nirenberg interpolation inequality <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-vertical-bar u double-vertical-bar Subscript upper L Sub Superscript normal infinity Subscript Baseline less-than-or-equal-to upper C Subscript q comma normal infinity comma p Baseline double-vertical-bar u double-vertical-bar Subscript upper L Sub Superscript q plus 1 Subscript Superscript 1 minus theta Baseline double-vertical-bar nabla u double-vertical-bar Subscript upper L Sub Superscript p Subscript Superscript theta Baseline comma theta equals StartFraction p d Over d p plus left-parenthesis p minus d right-parenthesis left-parenthesis q plus 1 right-parenthesis EndFraction comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>u</mml:mi>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>q</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>u</mml:mi>\\n <mml:msubsup>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>q</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:msubsup>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>θ<!-- θ --></mml:mi>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo>,</mml:mo>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mi>p</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>d</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\|u\\\\|_{L^{\\\\infty }}\\\\leq C_{q,\\\\infty ,p} \\\\|u\\\\|^{1-\\\\theta }_{L^{q+1}}\\\\|\\\\nabla u\\\\|^{\\\\theta }_{L^p},\\\\quad \\\\theta =\\\\frac {pd}{dp+(p-d)(q+1)}, \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n where parameters <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\">\\n <mml:semantics>\\n <mml:mi>q</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> satisfy the conditions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than d greater-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>d</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p>d\\\\geq 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q greater-than-or-equal-to 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>q</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q\\\\geq 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The best constant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript q comma normal infinity comma p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>q</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_{q,\\\\infty ,p}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is given by <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript q comma normal infinity comma p Baseline equals theta Superscript minus StartFraction theta Over p EndFraction Baseline left-parenthesis 1 minus theta right-parenthesis Superscript StartFraction theta Over p EndFraction Baseline upper M Subscript c Superscript minus StartFraction theta Over d EndFraction Baseline comma upper M Subscript c Baseline colon-equal integral Underscript double-struck upper R Superscript d Baseline Endscripts u Subscript c comma normal infinity Superscript q plus 1 Baseline d x comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>q</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mfrac>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:msubsup>\\n <mml:mi>M</mml:mi>\\n <mml:mi>c</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mfrac>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo>,</mml:mo>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:msub>\\n <mml:mi>M</mml:mi>\\n <mml:mi>c</mml:mi>\\n </mml:msub>\\n <mml:mo>≔</mml:mo>\\n <mml:msub>\\n <mml:mo>∫<!-- ∫ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msubsup>\\n <mml:mi>u</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>c</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>q</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mi>d</mml:mi>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} C_{q,\\\\infty ,p}=\\\\theta ^{-\\\\frac {\\\\theta }{p}}(1-\\\\theta )^{\\\\frac {\\\\theta }{p}}M_c^{-\\\\frac {\\\\theta }{d}},\\\\quad M_c≔\\\\int _{\\\\mathbb {R}^d}u_{c,\\\\infty }^{q+1} dx, \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u Subscript c comma normal infinity\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>u</mml:mi>\\n \",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1645\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们导出了以下L∞L^{\infty}-型Gagliardo-Nirenberg插值不等式的最佳常数,p∈u∈L q+1 1−θ∈u≈L pθ,θ=p d d p+(p−d)(q+1),\ begin{方程*}\|u\|_{L^{\fty}}\leq C_,\quadθ=\frac{pd}{dp+(p-d)(q+1)},结束{方程*},其中参数q q和p满足条件p>d≥1 p>d \ geq 1,q≥0 q \ geq 0。最佳常数Cq,∞,p C_{q,\infty,p}由Cq,p=θ−θp(1−θ)θ,Mc≔ŞRd u c,∞q+1d x,{begin{equation*}C_{q,\infty,p}=\theta^{-\frac{θ}{p}}(1-\theta)^{\frac{θ{p}}M_C^{-\frac{{θ}{d},\quad M_C≔\int _{\mathbb{R}^d}u_{C,\infity}^{q+1}dx,\end{equation*}其中u
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The best constant for 𝐿^{∞}-type Gagliardo-Nirenberg inequalities

In this paper we derive the best constant for the following L L^{\infty } -type Gagliardo-Nirenberg interpolation inequality u L C q , , p u L q + 1 1 θ u L p θ , θ = p d d p + ( p d ) ( q + 1 ) , \begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*} where parameters q q and p p satisfy the conditions p > d 1 p>d\geq 1 , q 0 q\geq 0 . The best constant C q , , p C_{q,\infty ,p} is given by C q , , p = θ θ p ( 1 θ ) θ p M c θ d , M c R d u c , q + 1 d x , \begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*} where u

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信