Emily Darc Andrade dos Santos, D. Tng, D. Apgaua, Raul Reis Assunção, A. Manzi
{"title":"亚马逊中部热带雨林土壤磷组分及其与凋落叶的关系","authors":"Emily Darc Andrade dos Santos, D. Tng, D. Apgaua, Raul Reis Assunção, A. Manzi","doi":"10.1590/1809-4392202103471","DOIUrl":null,"url":null,"abstract":"ABSTRACT Phosphorus (P) cycling is an important yet poorly studied aspect of the macronutrient balance in tropical rainforest ecosystems. As soil P occurs in different organic and inorganic forms (fractions) with varying degrees of lability, we hypothesized that these fractions will vary between soil types, and temporally within soil types. Additionally, we hypothesized a direct influence of leaf litterfall P input on soil total P and soil P fractions. We collected soil and leaf litter samples from three soil types in a central Amazonian lowland rainforest in Brazil over five months, and used a modified Hedleys fractionation method to determine six organic and inorganic soil P fractions, and also total, labile and residual P. Leaf litterfall P concentrations were determined colorimetrically. Soil inorganic and organic P fractions varied between soil types and across months, but soil type and month interactions were mostly non-significant. Some inorganic P fractions (Pi-NaOH) peaked while the organic fractions (Po-NaOH) fell and vice versa. Leaf litterfall production and leaf litterfall P input peaked around two months following the wettest month. Leaf litterfall P input was a significant predictor of Po-NaHCO3, a bioavailable P fraction. Future studies on P cycling in terrestrial ecosystems should examine the roles played by individual soil P fractions as they cycle asynchronistically and differently across soil types.","PeriodicalId":51309,"journal":{"name":"Acta Amazonica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soil phosphorus fractions and their relation to leaf litterfall in a central Amazonian terra firme rainforest\",\"authors\":\"Emily Darc Andrade dos Santos, D. Tng, D. Apgaua, Raul Reis Assunção, A. Manzi\",\"doi\":\"10.1590/1809-4392202103471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Phosphorus (P) cycling is an important yet poorly studied aspect of the macronutrient balance in tropical rainforest ecosystems. As soil P occurs in different organic and inorganic forms (fractions) with varying degrees of lability, we hypothesized that these fractions will vary between soil types, and temporally within soil types. Additionally, we hypothesized a direct influence of leaf litterfall P input on soil total P and soil P fractions. We collected soil and leaf litter samples from three soil types in a central Amazonian lowland rainforest in Brazil over five months, and used a modified Hedleys fractionation method to determine six organic and inorganic soil P fractions, and also total, labile and residual P. Leaf litterfall P concentrations were determined colorimetrically. Soil inorganic and organic P fractions varied between soil types and across months, but soil type and month interactions were mostly non-significant. Some inorganic P fractions (Pi-NaOH) peaked while the organic fractions (Po-NaOH) fell and vice versa. Leaf litterfall production and leaf litterfall P input peaked around two months following the wettest month. Leaf litterfall P input was a significant predictor of Po-NaHCO3, a bioavailable P fraction. Future studies on P cycling in terrestrial ecosystems should examine the roles played by individual soil P fractions as they cycle asynchronistically and differently across soil types.\",\"PeriodicalId\":51309,\"journal\":{\"name\":\"Acta Amazonica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Amazonica\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1590/1809-4392202103471\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Amazonica","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1590/1809-4392202103471","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Soil phosphorus fractions and their relation to leaf litterfall in a central Amazonian terra firme rainforest
ABSTRACT Phosphorus (P) cycling is an important yet poorly studied aspect of the macronutrient balance in tropical rainforest ecosystems. As soil P occurs in different organic and inorganic forms (fractions) with varying degrees of lability, we hypothesized that these fractions will vary between soil types, and temporally within soil types. Additionally, we hypothesized a direct influence of leaf litterfall P input on soil total P and soil P fractions. We collected soil and leaf litter samples from three soil types in a central Amazonian lowland rainforest in Brazil over five months, and used a modified Hedleys fractionation method to determine six organic and inorganic soil P fractions, and also total, labile and residual P. Leaf litterfall P concentrations were determined colorimetrically. Soil inorganic and organic P fractions varied between soil types and across months, but soil type and month interactions were mostly non-significant. Some inorganic P fractions (Pi-NaOH) peaked while the organic fractions (Po-NaOH) fell and vice versa. Leaf litterfall production and leaf litterfall P input peaked around two months following the wettest month. Leaf litterfall P input was a significant predictor of Po-NaHCO3, a bioavailable P fraction. Future studies on P cycling in terrestrial ecosystems should examine the roles played by individual soil P fractions as they cycle asynchronistically and differently across soil types.
期刊介绍:
Acta Amzonica is a multidisciplinary, peer-reviewed, open access, free-of-charge scientific journal for research in and about the Amazon region, published since 1971 by the Instituto Nacional de Pesquisas da Amazônia - INPA, in Brazil.
The journal publishes quarterly issues containing articles and short communications in English across a broad range of disciplines, including Agronomy and Forestry, Animal Sciences and Fisheries, Biodiversity and Conservation, Biotechnology, Chemistry and Pharmacology, Environmental Sciences, Food Sciences, Geosciences, Health Sciences, Human and Social Sciences, and Materials Technology.