M. McGlue, Geoffrey S. Ellis, M. Brannon, J. Latimer, J. Stone, S. Ivory, Neema E. Mganza, M. Soreghan, C. Scholz
{"title":"坦噶尼喀湖(东非)南部深水斜坡沉积物的沉积地球化学:上升流和轻微湖平面振荡的影响","authors":"M. McGlue, Geoffrey S. Ellis, M. Brannon, J. Latimer, J. Stone, S. Ivory, Neema E. Mganza, M. Soreghan, C. Scholz","doi":"10.2110/jsr.2021.104","DOIUrl":null,"url":null,"abstract":"\n Lake Tanganyika ranks among the most valuable modern analogs for understanding depositional processes of carbonaceous sediments in ancient tropical rifts. Prior research on Lake Tanganyika has emphasized the importance of bottom-water anoxia, depositional processes (hemipelagic settling versus gravity flows), and large-scale (100s of meters) lake level change on the quality of sedimentary organic matter content. Here, facies analysis and numerous organic geochemical tools (elemental, carbon isotope, and programmed pyrolysis) were applied to a radiocarbon-dated core from southern Lake Tanganyika to investigate the accumulation of carbonaceous sediments in a deepwater slope environment influenced by high-frequency climatic fluctuations accompanied by only minor (10s of meters) lake level changes. Considerable variability in lithofacies and geochemistry characterizes the ∼ 1030-year-long core record, chiefly driven by climate-mediated changes to the lake's upwelling system. Laminated diatom oozes and sapropels with mean total organic carbon (TOC) concentrations and hydrogen indices of 6.9 wt.% and 385 mg hydrocarbon/g TOC, respectively, characterize sediments deposited during periods of strong upwelling and variable water levels. Silty sediments deposited via gravity-flow processes were likewise rich in organic matter, likely due to preservation-enhancing bottom-water anoxia. Dilution by reworked tephra was the chief constraint on organic enrichment at the study site. Data from this study reveal that oscillations in atmospheric and limnological processes in the absence of major shoreline movements can result in geochemically diverse deepwater slope sediments, which have implications for improving depositional models of petroliferous continental rift basins.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sedimentary geochemistry of deepwater slope deposits in southern Lake Tanganyika (East Africa): Effects of upwelling and minor lake level oscillations\",\"authors\":\"M. McGlue, Geoffrey S. Ellis, M. Brannon, J. Latimer, J. Stone, S. Ivory, Neema E. Mganza, M. Soreghan, C. Scholz\",\"doi\":\"10.2110/jsr.2021.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lake Tanganyika ranks among the most valuable modern analogs for understanding depositional processes of carbonaceous sediments in ancient tropical rifts. Prior research on Lake Tanganyika has emphasized the importance of bottom-water anoxia, depositional processes (hemipelagic settling versus gravity flows), and large-scale (100s of meters) lake level change on the quality of sedimentary organic matter content. Here, facies analysis and numerous organic geochemical tools (elemental, carbon isotope, and programmed pyrolysis) were applied to a radiocarbon-dated core from southern Lake Tanganyika to investigate the accumulation of carbonaceous sediments in a deepwater slope environment influenced by high-frequency climatic fluctuations accompanied by only minor (10s of meters) lake level changes. Considerable variability in lithofacies and geochemistry characterizes the ∼ 1030-year-long core record, chiefly driven by climate-mediated changes to the lake's upwelling system. Laminated diatom oozes and sapropels with mean total organic carbon (TOC) concentrations and hydrogen indices of 6.9 wt.% and 385 mg hydrocarbon/g TOC, respectively, characterize sediments deposited during periods of strong upwelling and variable water levels. Silty sediments deposited via gravity-flow processes were likewise rich in organic matter, likely due to preservation-enhancing bottom-water anoxia. Dilution by reworked tephra was the chief constraint on organic enrichment at the study site. Data from this study reveal that oscillations in atmospheric and limnological processes in the absence of major shoreline movements can result in geochemically diverse deepwater slope sediments, which have implications for improving depositional models of petroliferous continental rift basins.\",\"PeriodicalId\":17044,\"journal\":{\"name\":\"Journal of Sedimentary Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sedimentary Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2110/jsr.2021.104\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2021.104","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Sedimentary geochemistry of deepwater slope deposits in southern Lake Tanganyika (East Africa): Effects of upwelling and minor lake level oscillations
Lake Tanganyika ranks among the most valuable modern analogs for understanding depositional processes of carbonaceous sediments in ancient tropical rifts. Prior research on Lake Tanganyika has emphasized the importance of bottom-water anoxia, depositional processes (hemipelagic settling versus gravity flows), and large-scale (100s of meters) lake level change on the quality of sedimentary organic matter content. Here, facies analysis and numerous organic geochemical tools (elemental, carbon isotope, and programmed pyrolysis) were applied to a radiocarbon-dated core from southern Lake Tanganyika to investigate the accumulation of carbonaceous sediments in a deepwater slope environment influenced by high-frequency climatic fluctuations accompanied by only minor (10s of meters) lake level changes. Considerable variability in lithofacies and geochemistry characterizes the ∼ 1030-year-long core record, chiefly driven by climate-mediated changes to the lake's upwelling system. Laminated diatom oozes and sapropels with mean total organic carbon (TOC) concentrations and hydrogen indices of 6.9 wt.% and 385 mg hydrocarbon/g TOC, respectively, characterize sediments deposited during periods of strong upwelling and variable water levels. Silty sediments deposited via gravity-flow processes were likewise rich in organic matter, likely due to preservation-enhancing bottom-water anoxia. Dilution by reworked tephra was the chief constraint on organic enrichment at the study site. Data from this study reveal that oscillations in atmospheric and limnological processes in the absence of major shoreline movements can result in geochemically diverse deepwater slope sediments, which have implications for improving depositional models of petroliferous continental rift basins.
期刊介绍:
The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.