具有非进展者行为改变的病毒抗性HIV-1模型分析

Q2 Agricultural and Biological Sciences
Musa Rabiu, R. Willie, N. Parumasur
{"title":"具有非进展者行为改变的病毒抗性HIV-1模型分析","authors":"Musa Rabiu, R. Willie, N. Parumasur","doi":"10.11145/j.biomath.2020.06.143","DOIUrl":null,"url":null,"abstract":"We develop a virus-resistant HIV-1 mathematical model with behavioural change in HIV-1 resistant non-progressors. The model has both disease-free and endemic equilibrium points that are proved to be locally asymptotically stable depending on the value of the associated reproduction numbers. In both models, a non-linear Goh{Volterra Lyapunov function was used to prove that the endemic equilibrium point is globally asymptotically stable for special case while the method of Castillo-Chavez was used to prove the global asymptotic stability of the disease-free equilibrium point. In both the analytic and numerical results, this study shows that in the context of resistance to HIV/AIDS, total abstinence can also play an important role in protection against this notorious infectious disease.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analysis of a virus-resistant HIV-1 model with behavior change in non-progressors\",\"authors\":\"Musa Rabiu, R. Willie, N. Parumasur\",\"doi\":\"10.11145/j.biomath.2020.06.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a virus-resistant HIV-1 mathematical model with behavioural change in HIV-1 resistant non-progressors. The model has both disease-free and endemic equilibrium points that are proved to be locally asymptotically stable depending on the value of the associated reproduction numbers. In both models, a non-linear Goh{Volterra Lyapunov function was used to prove that the endemic equilibrium point is globally asymptotically stable for special case while the method of Castillo-Chavez was used to prove the global asymptotic stability of the disease-free equilibrium point. In both the analytic and numerical results, this study shows that in the context of resistance to HIV/AIDS, total abstinence can also play an important role in protection against this notorious infectious disease.\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/j.biomath.2020.06.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/j.biomath.2020.06.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 6

摘要

我们开发了一个具有病毒抗性的HIV-1数学模型,其中包含HIV-1抗性非进展者的行为变化。该模型同时具有无病平衡点和地方性平衡点,并根据相关繁殖数的值证明它们是局部渐近稳定的。在这两个模型中,采用非线性Goh{Volterra Lyapunov函数证明了特殊情况下的地方病平衡点是全局渐近稳定的,采用Castillo-Chavez方法证明了无病平衡点的全局渐近稳定。在分析和数值结果中,本研究表明,在抵抗艾滋病毒/艾滋病的背景下,完全禁欲也可以在预防这种臭名昭着的传染病方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a virus-resistant HIV-1 model with behavior change in non-progressors
We develop a virus-resistant HIV-1 mathematical model with behavioural change in HIV-1 resistant non-progressors. The model has both disease-free and endemic equilibrium points that are proved to be locally asymptotically stable depending on the value of the associated reproduction numbers. In both models, a non-linear Goh{Volterra Lyapunov function was used to prove that the endemic equilibrium point is globally asymptotically stable for special case while the method of Castillo-Chavez was used to prove the global asymptotic stability of the disease-free equilibrium point. In both the analytic and numerical results, this study shows that in the context of resistance to HIV/AIDS, total abstinence can also play an important role in protection against this notorious infectious disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信