复合材料榫钉形状的演变

IF 0.7 Q4 MECHANICS
W. Lorenc, G. Seidl, J. Berthellemy
{"title":"复合材料榫钉形状的演变","authors":"W. Lorenc, G. Seidl, J. Berthellemy","doi":"10.2478/sgem-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract Composite dowels have opened new possibilities for engineers designing composite structures. The fundamental and most important characteristic of composite dowels is the shape of the cutting line. It is important to understand why only one particular shape of the cutting line is used in bridge engineering, while so many different shapes have been investigated by many researchers. The essential part of the process of developing composite dowels – the development of the shape of the cutting line – is presented in this paper. The influence of the steel web thickness is presented, and technological problems of steel fabrication are highlighted. The role of empirical experience from the first bridges, push-out tests, and finite element simulations is presented. Assumptions for numerical procedures are given. The distinction between the steel failure and concrete failure modes is introduced for composite dowels. The paper presents how the concept of “shape” was divided into “shape,” “ratio,” and finally “size,” and how, because of the fatigue problems in bridges, all the three factors have emerged to result in the form of shapes that can satisfy the requirements for bridges. Research leading to the invention of the first version of the clothoidal shape is presented.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolution of the shape of composite dowels\",\"authors\":\"W. Lorenc, G. Seidl, J. Berthellemy\",\"doi\":\"10.2478/sgem-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Composite dowels have opened new possibilities for engineers designing composite structures. The fundamental and most important characteristic of composite dowels is the shape of the cutting line. It is important to understand why only one particular shape of the cutting line is used in bridge engineering, while so many different shapes have been investigated by many researchers. The essential part of the process of developing composite dowels – the development of the shape of the cutting line – is presented in this paper. The influence of the steel web thickness is presented, and technological problems of steel fabrication are highlighted. The role of empirical experience from the first bridges, push-out tests, and finite element simulations is presented. Assumptions for numerical procedures are given. The distinction between the steel failure and concrete failure modes is introduced for composite dowels. The paper presents how the concept of “shape” was divided into “shape,” “ratio,” and finally “size,” and how, because of the fatigue problems in bridges, all the three factors have emerged to result in the form of shapes that can satisfy the requirements for bridges. Research leading to the invention of the first version of the clothoidal shape is presented.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2022-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

复合材料榫为复合材料结构的设计提供了新的可能性。复合材料销钉的基本和最重要的特性是切削线的形状。重要的是要理解为什么在桥梁工程中只使用一种特定形状的切割线,而许多研究人员已经研究了许多不同的形状。本文介绍了复合材料销钉成形过程中的关键环节——切削线形状的成形。介绍了钢腹板厚度的影响,并着重指出了钢腹板制造的技术问题。介绍了首座桥梁的经验经验、推出试验和有限元模拟的作用。给出了数值过程的假设。介绍了复合钉破坏模式与混凝土破坏模式的区别。本文介绍了“形状”的概念如何被划分为“形状”、“比例”和最后的“尺寸”,以及由于桥梁的疲劳问题,这三个因素如何出现,从而产生满足桥梁要求的形状形式。研究导致发明的第一个版本的梭形提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The evolution of the shape of composite dowels
Abstract Composite dowels have opened new possibilities for engineers designing composite structures. The fundamental and most important characteristic of composite dowels is the shape of the cutting line. It is important to understand why only one particular shape of the cutting line is used in bridge engineering, while so many different shapes have been investigated by many researchers. The essential part of the process of developing composite dowels – the development of the shape of the cutting line – is presented in this paper. The influence of the steel web thickness is presented, and technological problems of steel fabrication are highlighted. The role of empirical experience from the first bridges, push-out tests, and finite element simulations is presented. Assumptions for numerical procedures are given. The distinction between the steel failure and concrete failure modes is introduced for composite dowels. The paper presents how the concept of “shape” was divided into “shape,” “ratio,” and finally “size,” and how, because of the fatigue problems in bridges, all the three factors have emerged to result in the form of shapes that can satisfy the requirements for bridges. Research leading to the invention of the first version of the clothoidal shape is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信