{"title":"具有大振荡系数的弱稳定双曲边界问题:简单级联","authors":"Mark E. Williams","doi":"10.1142/s0219891620500058","DOIUrl":null,"url":null,"abstract":"We prove energy estimates for exact solutions to a class of linear, weakly stable, first-order hyperbolic boundary problems with “large”, oscillatory, zeroth-order coefficients, that is, coefficients whose amplitude is large, [Formula: see text], compared to the wavelength of the oscillations, [Formula: see text]. The methods that have been used previously to prove useful energy estimates for weakly stable problems with oscillatory coefficients (e.g. simultaneous diagonalization of first-order and zeroth-order parts) all appear to fail in the presence of such large coefficients. We show that our estimates provide a way to “justify geometric optics”, that is, a way to decide whether or not approximate solutions, constructed for example by geometric optics, are close to the exact solutions on a time interval independent of [Formula: see text]. Systems of this general type arise in some classical problems of “strongly nonlinear geometric optics” coming from fluid mechanics. Special assumptions that we make here do not yet allow us to treat the latter problems, but we believe the present analysis will provide some guidance on how to attack more general cases.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":"17 1","pages":"141-183"},"PeriodicalIF":0.5000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219891620500058","citationCount":"2","resultStr":"{\"title\":\"Weakly stable hyperbolic boundary problems with large oscillatory coefficients: Simple cascades\",\"authors\":\"Mark E. Williams\",\"doi\":\"10.1142/s0219891620500058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove energy estimates for exact solutions to a class of linear, weakly stable, first-order hyperbolic boundary problems with “large”, oscillatory, zeroth-order coefficients, that is, coefficients whose amplitude is large, [Formula: see text], compared to the wavelength of the oscillations, [Formula: see text]. The methods that have been used previously to prove useful energy estimates for weakly stable problems with oscillatory coefficients (e.g. simultaneous diagonalization of first-order and zeroth-order parts) all appear to fail in the presence of such large coefficients. We show that our estimates provide a way to “justify geometric optics”, that is, a way to decide whether or not approximate solutions, constructed for example by geometric optics, are close to the exact solutions on a time interval independent of [Formula: see text]. Systems of this general type arise in some classical problems of “strongly nonlinear geometric optics” coming from fluid mechanics. Special assumptions that we make here do not yet allow us to treat the latter problems, but we believe the present analysis will provide some guidance on how to attack more general cases.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\"17 1\",\"pages\":\"141-183\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219891620500058\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219891620500058\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891620500058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Weakly stable hyperbolic boundary problems with large oscillatory coefficients: Simple cascades
We prove energy estimates for exact solutions to a class of linear, weakly stable, first-order hyperbolic boundary problems with “large”, oscillatory, zeroth-order coefficients, that is, coefficients whose amplitude is large, [Formula: see text], compared to the wavelength of the oscillations, [Formula: see text]. The methods that have been used previously to prove useful energy estimates for weakly stable problems with oscillatory coefficients (e.g. simultaneous diagonalization of first-order and zeroth-order parts) all appear to fail in the presence of such large coefficients. We show that our estimates provide a way to “justify geometric optics”, that is, a way to decide whether or not approximate solutions, constructed for example by geometric optics, are close to the exact solutions on a time interval independent of [Formula: see text]. Systems of this general type arise in some classical problems of “strongly nonlinear geometric optics” coming from fluid mechanics. Special assumptions that we make here do not yet allow us to treat the latter problems, but we believe the present analysis will provide some guidance on how to attack more general cases.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.