{"title":"偏高岭土- kadilux环氧涂料对镀锌钢的屏障防腐性能","authors":"Fantaye Tasew, Ganesh Thothadri","doi":"10.1155/2021/1049021","DOIUrl":null,"url":null,"abstract":"Epoxy polymer, an illustrious barrier corrosion protective coating, was reinforced with metakaolin clay, an eco-friendly inorganic filler to enhance the barrier corrosion protection properties in water and in acidic environment on galvanized steel plates. Various proportions 0, 1, 3, 5, and 7 wt.% of metakaolin fillers were mixed intrinsically with kadilux epoxy and characterized for thermal stability, water absorption according to ASTM G31, and acid immersion according to ASTM D-570 standards, respectively. The reinforced coatings minimized the pore size and density, lower water absorption, and better acid resistance properties especially at 7 wt.% of the fillers. The thermal stability of the films improved beyond 5 wt.% of filler composition.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Barrier Corrosion Protection Properties of Metakaolin Clay-Kadilux Epoxy Coatings on Galvanized Steel\",\"authors\":\"Fantaye Tasew, Ganesh Thothadri\",\"doi\":\"10.1155/2021/1049021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epoxy polymer, an illustrious barrier corrosion protective coating, was reinforced with metakaolin clay, an eco-friendly inorganic filler to enhance the barrier corrosion protection properties in water and in acidic environment on galvanized steel plates. Various proportions 0, 1, 3, 5, and 7 wt.% of metakaolin fillers were mixed intrinsically with kadilux epoxy and characterized for thermal stability, water absorption according to ASTM G31, and acid immersion according to ASTM D-570 standards, respectively. The reinforced coatings minimized the pore size and density, lower water absorption, and better acid resistance properties especially at 7 wt.% of the fillers. The thermal stability of the films improved beyond 5 wt.% of filler composition.\",\"PeriodicalId\":13893,\"journal\":{\"name\":\"International Journal of Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/1049021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/1049021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Barrier Corrosion Protection Properties of Metakaolin Clay-Kadilux Epoxy Coatings on Galvanized Steel
Epoxy polymer, an illustrious barrier corrosion protective coating, was reinforced with metakaolin clay, an eco-friendly inorganic filler to enhance the barrier corrosion protection properties in water and in acidic environment on galvanized steel plates. Various proportions 0, 1, 3, 5, and 7 wt.% of metakaolin fillers were mixed intrinsically with kadilux epoxy and characterized for thermal stability, water absorption according to ASTM G31, and acid immersion according to ASTM D-570 standards, respectively. The reinforced coatings minimized the pore size and density, lower water absorption, and better acid resistance properties especially at 7 wt.% of the fillers. The thermal stability of the films improved beyond 5 wt.% of filler composition.