{"title":"一类非线性微分方程的基于动态微分算子的非局部数值范式","authors":"Xiaohu Yu, Airong Chen, Haocheng Chang","doi":"10.1007/s40571-023-00568-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel nonlocal numerical paradigm for a class of general nonlinear ordinary differential equations using the peridynamic differential operator. Differential governing equations and initial/boundary conditions are reformulated from the local differential form to the nonlocal integral form using a meshless orthogonal technique. The solution domain is partitioned into a finite number of points, of which the properties are obtained through weighted summation over the corresponding properties of neighboring points. Using the Lagrange multiplier method and the variational principle, nonlinear ordinary differential equations with initial/boundary conditions can be solved through the Newton–Raphson iteration method. Moreover, the differences between the proposed method and other methods are illustrated by comparing several impact factors. Furthermore, three benchmarks, including the Riccati equation, the Poisson equation, and the fluid flow equation, have been solved to show the applicability and accuracy of the proposed numerical method, and the results are consistent with the numerical results in the previous literature. Finally, the proposed method is applied to the galloping vibration problem to reveal the galloping mechanism.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"10 5","pages":"1383 - 1395"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-023-00568-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Peridynamic differential operator-based nonlocal numerical paradigm for a class of nonlinear differential equations\",\"authors\":\"Xiaohu Yu, Airong Chen, Haocheng Chang\",\"doi\":\"10.1007/s40571-023-00568-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel nonlocal numerical paradigm for a class of general nonlinear ordinary differential equations using the peridynamic differential operator. Differential governing equations and initial/boundary conditions are reformulated from the local differential form to the nonlocal integral form using a meshless orthogonal technique. The solution domain is partitioned into a finite number of points, of which the properties are obtained through weighted summation over the corresponding properties of neighboring points. Using the Lagrange multiplier method and the variational principle, nonlinear ordinary differential equations with initial/boundary conditions can be solved through the Newton–Raphson iteration method. Moreover, the differences between the proposed method and other methods are illustrated by comparing several impact factors. Furthermore, three benchmarks, including the Riccati equation, the Poisson equation, and the fluid flow equation, have been solved to show the applicability and accuracy of the proposed numerical method, and the results are consistent with the numerical results in the previous literature. Finally, the proposed method is applied to the galloping vibration problem to reveal the galloping mechanism.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"10 5\",\"pages\":\"1383 - 1395\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40571-023-00568-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00568-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00568-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Peridynamic differential operator-based nonlocal numerical paradigm for a class of nonlinear differential equations
This paper presents a novel nonlocal numerical paradigm for a class of general nonlinear ordinary differential equations using the peridynamic differential operator. Differential governing equations and initial/boundary conditions are reformulated from the local differential form to the nonlocal integral form using a meshless orthogonal technique. The solution domain is partitioned into a finite number of points, of which the properties are obtained through weighted summation over the corresponding properties of neighboring points. Using the Lagrange multiplier method and the variational principle, nonlinear ordinary differential equations with initial/boundary conditions can be solved through the Newton–Raphson iteration method. Moreover, the differences between the proposed method and other methods are illustrated by comparing several impact factors. Furthermore, three benchmarks, including the Riccati equation, the Poisson equation, and the fluid flow equation, have been solved to show the applicability and accuracy of the proposed numerical method, and the results are consistent with the numerical results in the previous literature. Finally, the proposed method is applied to the galloping vibration problem to reveal the galloping mechanism.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.