{"title":"旋转圆柱群的二维涡旋脱落","authors":"B. B. Ndebele, I. M. A. Gledhill","doi":"10.47176/jafm.16.11.1773","DOIUrl":null,"url":null,"abstract":"The dynamics of two-dimensional vortex shedding from a rotating cluster of three cylinders was investigated using Computational Fluid Dynamics (CFD) and Dynamic Mode Decomposition (DMD). The cluster was formed from three circles with equal diameters in mutual contact and allowed to rotate about an axis passing through the cluster centroid. While immersed in an incompressible fluid with Reynolds number of 100, the cluster was allowed to rotate at non-dimensionalised rotation rates (Ω) between 0 and 1. The rotation rates were non-dimensionalised using the free-stream velocity and the cluster characteristic diameter, the latter being equal to the diameter of the circle circumscribing the cluster. CFD simulations were performed using StarCCM+. Dynamic Mode Decomposition based on the two-dimensional vorticity field was used to decompose the field into its fundamental mode-shapes. It was then possible to relate the mode-shapes to lift and drag. Transverse and longitudinal mode-shapes corresponded to lift and drag, respectively. Lift–drag polars showed a more complex pattern dependent on Ω in which the flow fields could be classified into three regimes: Ω less than 0.3, greater than 0.5, and between 0.3 and 0.5. In general, the polars formed open curves in contrast to those of static cylinders, which were closed. However, some cases, such as Ω = 0.01, 0.22, and 0.28, formed closed curves. Whether a lift-drag polar was closed or open was deduced to be determined by the ratio of Strouhal numbers calculated using lift and drag time series, with closed curves forming when the ratio is an integer.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Dimensional Vortex Shedding from a Rotating Cluster of Cylinders\",\"authors\":\"B. B. Ndebele, I. M. A. Gledhill\",\"doi\":\"10.47176/jafm.16.11.1773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of two-dimensional vortex shedding from a rotating cluster of three cylinders was investigated using Computational Fluid Dynamics (CFD) and Dynamic Mode Decomposition (DMD). The cluster was formed from three circles with equal diameters in mutual contact and allowed to rotate about an axis passing through the cluster centroid. While immersed in an incompressible fluid with Reynolds number of 100, the cluster was allowed to rotate at non-dimensionalised rotation rates (Ω) between 0 and 1. The rotation rates were non-dimensionalised using the free-stream velocity and the cluster characteristic diameter, the latter being equal to the diameter of the circle circumscribing the cluster. CFD simulations were performed using StarCCM+. Dynamic Mode Decomposition based on the two-dimensional vorticity field was used to decompose the field into its fundamental mode-shapes. It was then possible to relate the mode-shapes to lift and drag. Transverse and longitudinal mode-shapes corresponded to lift and drag, respectively. Lift–drag polars showed a more complex pattern dependent on Ω in which the flow fields could be classified into three regimes: Ω less than 0.3, greater than 0.5, and between 0.3 and 0.5. In general, the polars formed open curves in contrast to those of static cylinders, which were closed. However, some cases, such as Ω = 0.01, 0.22, and 0.28, formed closed curves. Whether a lift-drag polar was closed or open was deduced to be determined by the ratio of Strouhal numbers calculated using lift and drag time series, with closed curves forming when the ratio is an integer.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.16.11.1773\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.11.1773","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Two Dimensional Vortex Shedding from a Rotating Cluster of Cylinders
The dynamics of two-dimensional vortex shedding from a rotating cluster of three cylinders was investigated using Computational Fluid Dynamics (CFD) and Dynamic Mode Decomposition (DMD). The cluster was formed from three circles with equal diameters in mutual contact and allowed to rotate about an axis passing through the cluster centroid. While immersed in an incompressible fluid with Reynolds number of 100, the cluster was allowed to rotate at non-dimensionalised rotation rates (Ω) between 0 and 1. The rotation rates were non-dimensionalised using the free-stream velocity and the cluster characteristic diameter, the latter being equal to the diameter of the circle circumscribing the cluster. CFD simulations were performed using StarCCM+. Dynamic Mode Decomposition based on the two-dimensional vorticity field was used to decompose the field into its fundamental mode-shapes. It was then possible to relate the mode-shapes to lift and drag. Transverse and longitudinal mode-shapes corresponded to lift and drag, respectively. Lift–drag polars showed a more complex pattern dependent on Ω in which the flow fields could be classified into three regimes: Ω less than 0.3, greater than 0.5, and between 0.3 and 0.5. In general, the polars formed open curves in contrast to those of static cylinders, which were closed. However, some cases, such as Ω = 0.01, 0.22, and 0.28, formed closed curves. Whether a lift-drag polar was closed or open was deduced to be determined by the ratio of Strouhal numbers calculated using lift and drag time series, with closed curves forming when the ratio is an integer.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .