新冠肺炎感染的实时估计:反卷积和传感器融合

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY
M. Jahja, Andrew Chin, R. Tibshirani
{"title":"新冠肺炎感染的实时估计:反卷积和传感器融合","authors":"M. Jahja, Andrew Chin, R. Tibshirani","doi":"10.1214/22-sts856","DOIUrl":null,"url":null,"abstract":"We propose, implement, and evaluate a method to estimate the daily number of new symptomatic COVID-19 infections, at the level of individual U.S. counties, by deconvolving daily reported COVID-19 case counts using an estimated symptom-onset-to-case-report delay distribution. Importantly, we focus on estimating infections in real-time (rather than retrospectively), which poses numerous challenges. To address these, we develop new methodology for both the distribution estimation and deconvolution steps, and we employ a sensor fusion layer (which fuses together predictions from models that are trained to track infections based on auxiliary surveillance streams) in order to improve accuracy and stability.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Real-Time Estimation of COVID-19 Infections: Deconvolution and Sensor Fusion\",\"authors\":\"M. Jahja, Andrew Chin, R. Tibshirani\",\"doi\":\"10.1214/22-sts856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose, implement, and evaluate a method to estimate the daily number of new symptomatic COVID-19 infections, at the level of individual U.S. counties, by deconvolving daily reported COVID-19 case counts using an estimated symptom-onset-to-case-report delay distribution. Importantly, we focus on estimating infections in real-time (rather than retrospectively), which poses numerous challenges. To address these, we develop new methodology for both the distribution estimation and deconvolution steps, and we employ a sensor fusion layer (which fuses together predictions from models that are trained to track infections based on auxiliary surveillance streams) in order to improve accuracy and stability.\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-sts856\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-sts856","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

摘要

我们提出、实施并评估了一种方法,通过使用估计的症状对病例报告延迟分布,对每日报告的新冠肺炎病例数进行去卷积,在美国个别县的水平上估计每日新增症状新冠肺炎感染人数。重要的是,我们专注于实时(而不是回顾性)估计感染,这带来了许多挑战。为了解决这些问题,我们为分布估计和反褶积步骤开发了新的方法,并使用了传感器融合层(将训练来跟踪基于辅助监测流的感染的模型的预测融合在一起),以提高准确性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Estimation of COVID-19 Infections: Deconvolution and Sensor Fusion
We propose, implement, and evaluate a method to estimate the daily number of new symptomatic COVID-19 infections, at the level of individual U.S. counties, by deconvolving daily reported COVID-19 case counts using an estimated symptom-onset-to-case-report delay distribution. Importantly, we focus on estimating infections in real-time (rather than retrospectively), which poses numerous challenges. To address these, we develop new methodology for both the distribution estimation and deconvolution steps, and we employ a sensor fusion layer (which fuses together predictions from models that are trained to track infections based on auxiliary surveillance streams) in order to improve accuracy and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信