{"title":"参数化非齐次自相似测度族中的绝对连续性","authors":"A. Käenmäki, Tuomas Orponen","doi":"10.4171/jfg/127","DOIUrl":null,"url":null,"abstract":"In 2016, Shmerkin and Solomyak showed that if $U \\subset \\mathbb{R}$ is an interval, and $\\{\\mu_{u}\\}_{u \\in U}$ is an analytic family of homogeneous self-similar measures on $\\mathbb{R}$ with similitude dimensions exceeding one, then, under a mild transversality assumption, $\\mu_{u} \\ll \\mathcal{L}^{1}$ for all parameters $u \\in U \\setminus E$, where $\\dim_{\\mathrm{H}} E = 0$. The purpose of this paper is to generalise the result of Shmerkin and Solomyak to non-homogeneous self-similar measures. As a corollary, we obtain new information about the absolute continuity of projections of non-homogeneous planar self-similar measures.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Absolute continuity in families of parametrised non-homogeneous self-similar measures\",\"authors\":\"A. Käenmäki, Tuomas Orponen\",\"doi\":\"10.4171/jfg/127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2016, Shmerkin and Solomyak showed that if $U \\\\subset \\\\mathbb{R}$ is an interval, and $\\\\{\\\\mu_{u}\\\\}_{u \\\\in U}$ is an analytic family of homogeneous self-similar measures on $\\\\mathbb{R}$ with similitude dimensions exceeding one, then, under a mild transversality assumption, $\\\\mu_{u} \\\\ll \\\\mathcal{L}^{1}$ for all parameters $u \\\\in U \\\\setminus E$, where $\\\\dim_{\\\\mathrm{H}} E = 0$. The purpose of this paper is to generalise the result of Shmerkin and Solomyak to non-homogeneous self-similar measures. As a corollary, we obtain new information about the absolute continuity of projections of non-homogeneous planar self-similar measures.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/127\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/127","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
摘要
2016年,Shmerkin和Solomyak证明,如果$U \子集\mathbb{R}$是一个区间,$\ \mu_{U} \}_{U \ \ U \ \ U \是$\mathbb{R}$上齐次自相似测度的解析族,相似维数超过1,则在温和的横向性假设下,$U \ \ set- E$中所有参数$U \ \ \ math_ {U} \ll \mathcal{L}^{1}$,其中$\dim_{\ mathm {H}} E = 0$。本文的目的是将Shmerkin和Solomyak的结果推广到非齐次自相似测度。作为一个推论,我们得到了关于非齐次平面自相似测度投影的绝对连续性的新信息。
Absolute continuity in families of parametrised non-homogeneous self-similar measures
In 2016, Shmerkin and Solomyak showed that if $U \subset \mathbb{R}$ is an interval, and $\{\mu_{u}\}_{u \in U}$ is an analytic family of homogeneous self-similar measures on $\mathbb{R}$ with similitude dimensions exceeding one, then, under a mild transversality assumption, $\mu_{u} \ll \mathcal{L}^{1}$ for all parameters $u \in U \setminus E$, where $\dim_{\mathrm{H}} E = 0$. The purpose of this paper is to generalise the result of Shmerkin and Solomyak to non-homogeneous self-similar measures. As a corollary, we obtain new information about the absolute continuity of projections of non-homogeneous planar self-similar measures.