污泥与芒果皮液共消化:水力滞留时间对甲烷产率和生物能源回收的影响

IF 2.1 Q3 ENVIRONMENTAL SCIENCES
Inês Silva, B. Gouveia, A. Azevedo, Edgar C. Fernandes, E. Duarte
{"title":"污泥与芒果皮液共消化:水力滞留时间对甲烷产率和生物能源回收的影响","authors":"Inês Silva, B. Gouveia, A. Azevedo, Edgar C. Fernandes, E. Duarte","doi":"10.13044/j.sdewes.d11.0454","DOIUrl":null,"url":null,"abstract":"As the shift towards renewable energy sources continues, new approaches for energy recovery from sewage sludge must be established. This paper explores the feasibility of implementing full-scale co-digestion of municipal sewage sludge with fruit biowaste through the synergetic effects obtained at the laboratory scale. The efficiency/stability of the process was studied for three hydraulic retention times. By using simple tools to evaluate the performance of the anaerobic digestion system, such as the specific methane indicator and the energy potential recovery indicator, it was shown that the shortest retention time of 13 days had the highest methane production and almost doubled the specific methane production, thus contributing to sustainable waste management and energy self-sufficiency of wastewater treatment plants.","PeriodicalId":46202,"journal":{"name":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sewage sludge co-digestion with mango peel liquor: impact of hydraulic retention time on methane yield and bioenergy recovery\",\"authors\":\"Inês Silva, B. Gouveia, A. Azevedo, Edgar C. Fernandes, E. Duarte\",\"doi\":\"10.13044/j.sdewes.d11.0454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the shift towards renewable energy sources continues, new approaches for energy recovery from sewage sludge must be established. This paper explores the feasibility of implementing full-scale co-digestion of municipal sewage sludge with fruit biowaste through the synergetic effects obtained at the laboratory scale. The efficiency/stability of the process was studied for three hydraulic retention times. By using simple tools to evaluate the performance of the anaerobic digestion system, such as the specific methane indicator and the energy potential recovery indicator, it was shown that the shortest retention time of 13 days had the highest methane production and almost doubled the specific methane production, thus contributing to sustainable waste management and energy self-sufficiency of wastewater treatment plants.\",\"PeriodicalId\":46202,\"journal\":{\"name\":\"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13044/j.sdewes.d11.0454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13044/j.sdewes.d11.0454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

随着向可再生能源的转变不断,必须建立从污水污泥中回收能源的新方法。本文通过在实验室规模上获得的协同效应,探索了城市污水污泥与水果生物垃圾全面共消化的可行性。对该工艺的效率/稳定性进行了三次水力停留时间的研究。通过使用简单的工具来评估厌氧消化系统的性能,如比甲烷指标和能量潜力回收指标,结果表明,最短停留时间13天的甲烷产量最高,比甲烷产量几乎翻了一番,从而有助于废水处理厂的可持续废物管理和能源自给自足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sewage sludge co-digestion with mango peel liquor: impact of hydraulic retention time on methane yield and bioenergy recovery
As the shift towards renewable energy sources continues, new approaches for energy recovery from sewage sludge must be established. This paper explores the feasibility of implementing full-scale co-digestion of municipal sewage sludge with fruit biowaste through the synergetic effects obtained at the laboratory scale. The efficiency/stability of the process was studied for three hydraulic retention times. By using simple tools to evaluate the performance of the anaerobic digestion system, such as the specific methane indicator and the energy potential recovery indicator, it was shown that the shortest retention time of 13 days had the highest methane production and almost doubled the specific methane production, thus contributing to sustainable waste management and energy self-sufficiency of wastewater treatment plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
9.50%
发文量
59
审稿时长
20 weeks
期刊介绍: The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信