Yasir Hamid, Ludovic Journax, F. Shah, M. Sugumaran
{"title":"基于sne -小波-支持向量机的网络入侵检测","authors":"Yasir Hamid, Ludovic Journax, F. Shah, M. Sugumaran","doi":"10.14257/IJSIA.2017.11.5.01","DOIUrl":null,"url":null,"abstract":"Recognizing intrusions quickly and precisely is vital to the proficient operation of computer networks. Precisely describing critical classes of intrusions extraordinarily encourages their recognizable proof; be that as it may, the nuances and complexities of anomalous activities can without much of a stretch complicate the procedure. Due to the inherent capability of the signal processing to discover the novel and obscure attacks, they have been pretty popular for Network Intrusion Detection, and the nearness of the self-comparability in the system activity propels the appropriateness for the application Wavelets. In this work we first subject the network data to dimension reduction using Stochastic Neighbor Embedding (SNE) and then preform the wavelet decomposition of the data. The classification results of the pre-processed data using Gaussian SVM over different bandwidths uphold the claim that the proposed system has appreciably improved detection coverage for all the attack groups and the normal data as well, and at the same time minimized the false alarms. (Coiflets), Biorthogonal wavelets, Harmonic wavelets, Legendre wavelets, M-band wavelets and Composite wavelets.","PeriodicalId":46187,"journal":{"name":"International Journal of Security and Its Applications","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Coalesce of SNE-Wavelet-SVM Technique for Network Intrusion Detection\",\"authors\":\"Yasir Hamid, Ludovic Journax, F. Shah, M. Sugumaran\",\"doi\":\"10.14257/IJSIA.2017.11.5.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing intrusions quickly and precisely is vital to the proficient operation of computer networks. Precisely describing critical classes of intrusions extraordinarily encourages their recognizable proof; be that as it may, the nuances and complexities of anomalous activities can without much of a stretch complicate the procedure. Due to the inherent capability of the signal processing to discover the novel and obscure attacks, they have been pretty popular for Network Intrusion Detection, and the nearness of the self-comparability in the system activity propels the appropriateness for the application Wavelets. In this work we first subject the network data to dimension reduction using Stochastic Neighbor Embedding (SNE) and then preform the wavelet decomposition of the data. The classification results of the pre-processed data using Gaussian SVM over different bandwidths uphold the claim that the proposed system has appreciably improved detection coverage for all the attack groups and the normal data as well, and at the same time minimized the false alarms. (Coiflets), Biorthogonal wavelets, Harmonic wavelets, Legendre wavelets, M-band wavelets and Composite wavelets.\",\"PeriodicalId\":46187,\"journal\":{\"name\":\"International Journal of Security and Its Applications\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Security and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/IJSIA.2017.11.5.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Security and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJSIA.2017.11.5.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Coalesce of SNE-Wavelet-SVM Technique for Network Intrusion Detection
Recognizing intrusions quickly and precisely is vital to the proficient operation of computer networks. Precisely describing critical classes of intrusions extraordinarily encourages their recognizable proof; be that as it may, the nuances and complexities of anomalous activities can without much of a stretch complicate the procedure. Due to the inherent capability of the signal processing to discover the novel and obscure attacks, they have been pretty popular for Network Intrusion Detection, and the nearness of the self-comparability in the system activity propels the appropriateness for the application Wavelets. In this work we first subject the network data to dimension reduction using Stochastic Neighbor Embedding (SNE) and then preform the wavelet decomposition of the data. The classification results of the pre-processed data using Gaussian SVM over different bandwidths uphold the claim that the proposed system has appreciably improved detection coverage for all the attack groups and the normal data as well, and at the same time minimized the false alarms. (Coiflets), Biorthogonal wavelets, Harmonic wavelets, Legendre wavelets, M-band wavelets and Composite wavelets.
期刊介绍:
IJSIA aims to facilitate and support research related to security technology and its applications. Our Journal provides a chance for academic and industry professionals to discuss recent progress in the area of security technology and its applications. Journal Topics: -Access Control -Ad Hoc & Sensor Network Security -Applied Cryptography -Authentication and Non-repudiation -Cryptographic Protocols -Denial of Service -E-Commerce Security -Identity and Trust Management -Information Hiding -Insider Threats and Countermeasures -Intrusion Detection & Prevention -Network & Wireless Security -Peer-to-Peer Security -Privacy and Anonymity -Secure installation, generation and operation -Security Analysis Methodologies -Security assurance -Security in Software Outsourcing -Security products or systems -Security technology -Systems and Data Security