广义微分方程及其它方程的仿射周期解

Pub Date : 2022-12-10 DOI:10.12775/tmna.2022.027
M. Federson, R. Grau, Carolina Mesquita
{"title":"广义微分方程及其它方程的仿射周期解","authors":"M. Federson, R. Grau, Carolina Mesquita","doi":"10.12775/tmna.2022.027","DOIUrl":null,"url":null,"abstract":"It is known that the concept of affine-periodicity encompasses classic notions\nof symmetries as the classic periodicity, anti-periodicity and rotating symmetries\n(in particular, quasi-periodicity). The aim of this paper is to establish the basis\n of affine-periodic solutions of generalized ODEs. Thus, for a given real number $T> 0$ and an invertible $n\\times n$ matrix $Q$, with entries in $\\mathbb C$,\nwe establish conditions for the existence of a $(Q,T)$-affine-periodic solution\nwithin the framework of nonautonomous generalized ODEs, whose integral form displays the nonabsolute Kurzweil integral, which encompasses many types\nof integrals, such as the Riemann, the Lebesgue integral, among others. The main tools employed here are the fixed point theorems of Banach and of Krasnosel'skiĭ.\nWe apply our main results to measure differential equations with\nHenstock-Kurzweil-Stiejtes righthand sides as well as to impulsive differential equations and dynamic equations on time scales which are particular cases of the former.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Affine-periodic solutions for generalized ODEs and other equations\",\"authors\":\"M. Federson, R. Grau, Carolina Mesquita\",\"doi\":\"10.12775/tmna.2022.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that the concept of affine-periodicity encompasses classic notions\\nof symmetries as the classic periodicity, anti-periodicity and rotating symmetries\\n(in particular, quasi-periodicity). The aim of this paper is to establish the basis\\n of affine-periodic solutions of generalized ODEs. Thus, for a given real number $T> 0$ and an invertible $n\\\\times n$ matrix $Q$, with entries in $\\\\mathbb C$,\\nwe establish conditions for the existence of a $(Q,T)$-affine-periodic solution\\nwithin the framework of nonautonomous generalized ODEs, whose integral form displays the nonabsolute Kurzweil integral, which encompasses many types\\nof integrals, such as the Riemann, the Lebesgue integral, among others. The main tools employed here are the fixed point theorems of Banach and of Krasnosel'skiĭ.\\nWe apply our main results to measure differential equations with\\nHenstock-Kurzweil-Stiejtes righthand sides as well as to impulsive differential equations and dynamic equations on time scales which are particular cases of the former.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,仿射周期性的概念包含了经典的对称性概念,如经典周期性、反周期性和旋转对称性(特别是准周期性)。本文的目的是建立广义微分方程仿射周期解的基础。因此,对于给定的实数$ t> $和一个可逆的$n\乘以n$矩阵$Q$,在$\mathbb C$中,我们建立了在非自治广义微分方程框架内$(Q,T)$-仿射周期解存在的条件,其积分形式表现为非绝对Kurzweil积分,它包含许多类型的积分,如Riemann积分,Lebesgue积分等。这里使用的主要工具是Banach和Krasnosel的不动点定理。我们将我们的主要结果应用于测量henstock - kurzweil - stiejtes右边的微分方程,以及脉冲微分方程和时间尺度上的动态方程,这是前者的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Affine-periodic solutions for generalized ODEs and other equations
It is known that the concept of affine-periodicity encompasses classic notions of symmetries as the classic periodicity, anti-periodicity and rotating symmetries (in particular, quasi-periodicity). The aim of this paper is to establish the basis of affine-periodic solutions of generalized ODEs. Thus, for a given real number $T> 0$ and an invertible $n\times n$ matrix $Q$, with entries in $\mathbb C$, we establish conditions for the existence of a $(Q,T)$-affine-periodic solution within the framework of nonautonomous generalized ODEs, whose integral form displays the nonabsolute Kurzweil integral, which encompasses many types of integrals, such as the Riemann, the Lebesgue integral, among others. The main tools employed here are the fixed point theorems of Banach and of Krasnosel'skiĭ. We apply our main results to measure differential equations with Henstock-Kurzweil-Stiejtes righthand sides as well as to impulsive differential equations and dynamic equations on time scales which are particular cases of the former.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信