连续运行参考站(CORS)网络对精度、精度和修复模糊时间(TTFA)性能的影响

IF 0.7 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Ömer Gökdaş, M. Özlüdemir
{"title":"连续运行参考站(CORS)网络对精度、精度和修复模糊时间(TTFA)性能的影响","authors":"Ömer Gökdaş, M. Özlüdemir","doi":"10.15446/esrj.v26n2.89819","DOIUrl":null,"url":null,"abstract":"The geometric design of the Continuously Operating Reference Station (CORS) network is one of the most critical factors that impact accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. In this study, the authors investigate the subject of geometric design by using both local ISKI CORS and national CORS-Turkey (CORS-TR) networks, and they redesign the ISKI CORS network by increasing interstation distances. For three systems, real-time Virtual Reference Station (VRS) solutions have been obtained and tested with Analysis of Variance (ANOVA). As a result, the 8-station ISKI CORS provides the most accurate results in the vertical component. In contrast, for TTFA performance, the CORS-TR network shows worse outcomes than the others. Due to the increase in the interstation distances, the increase in the base length caused worse results in FIX solution ratios for redesigned ISKI CORS. In summary, the authors have stated that the 8-station ISKI CORS network performs better, especially regarding vertical accuracy. Furthermore, the authors state that the TTFA performance and FIX solution ratios are high, and the ISKI CORS geometric design is optimal.","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance\",\"authors\":\"Ömer Gökdaş, M. Özlüdemir\",\"doi\":\"10.15446/esrj.v26n2.89819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometric design of the Continuously Operating Reference Station (CORS) network is one of the most critical factors that impact accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. In this study, the authors investigate the subject of geometric design by using both local ISKI CORS and national CORS-Turkey (CORS-TR) networks, and they redesign the ISKI CORS network by increasing interstation distances. For three systems, real-time Virtual Reference Station (VRS) solutions have been obtained and tested with Analysis of Variance (ANOVA). As a result, the 8-station ISKI CORS provides the most accurate results in the vertical component. In contrast, for TTFA performance, the CORS-TR network shows worse outcomes than the others. Due to the increase in the interstation distances, the increase in the base length caused worse results in FIX solution ratios for redesigned ISKI CORS. In summary, the authors have stated that the 8-station ISKI CORS network performs better, especially regarding vertical accuracy. Furthermore, the authors state that the TTFA performance and FIX solution ratios are high, and the ISKI CORS geometric design is optimal.\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/esrj.v26n2.89819\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/esrj.v26n2.89819","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

连续运行参考站(CORS)网络的几何设计是影响精度、精度和修复模糊时间(TTFA)性能的最关键因素之一。在本研究中,作者通过使用本地ISKI CORS和国家CORS-土耳其(CORS- tr)网络来研究几何设计主题,并通过增加站间距离来重新设计ISKI CORS网络。对三个系统进行了实时虚拟参考站(VRS)求解,并用方差分析(ANOVA)进行了验证。因此,8站ISKI CORS在垂直分量上提供了最准确的结果。相比之下,对于TTFA性能,CORS-TR网络表现出比其他网络更差的结果。重新设计的ISKI CORS,由于站间距离的增加,碱基长度的增加导致FIX溶液比的结果变差。综上所述,作者指出8站ISKI CORS网络性能更好,特别是在垂直精度方面。此外,作者还指出,TTFA性能和FIX溶液比高,ISKI CORS几何设计是最佳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance
The geometric design of the Continuously Operating Reference Station (CORS) network is one of the most critical factors that impact accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. In this study, the authors investigate the subject of geometric design by using both local ISKI CORS and national CORS-Turkey (CORS-TR) networks, and they redesign the ISKI CORS network by increasing interstation distances. For three systems, real-time Virtual Reference Station (VRS) solutions have been obtained and tested with Analysis of Variance (ANOVA). As a result, the 8-station ISKI CORS provides the most accurate results in the vertical component. In contrast, for TTFA performance, the CORS-TR network shows worse outcomes than the others. Due to the increase in the interstation distances, the increase in the base length caused worse results in FIX solution ratios for redesigned ISKI CORS. In summary, the authors have stated that the 8-station ISKI CORS network performs better, especially regarding vertical accuracy. Furthermore, the authors state that the TTFA performance and FIX solution ratios are high, and the ISKI CORS geometric design is optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Sciences Research Journal
Earth Sciences Research Journal 地学-地球科学综合
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications. Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors. We gladly consider manuscripts in the following subject areas: -Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods. -Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards. -Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems. -Basic Sciences and Computer Science applied to Geology and Geophysics. -Meteorology and Atmospheric Sciences. -Oceanography. -Planetary Sciences. -Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信