离散纤维映射与基点原点

IF 0.6 4区 数学 Q3 MATHEMATICS
Matías Menni
{"title":"离散纤维映射与基点原点","authors":"Matías Menni","doi":"10.1007/s10485-022-09680-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({p : \\mathcal {E}\\rightarrow \\mathcal S}\\)</span> be a hyperconnected geometric morphism. For each <i>X</i> in the ‘gros’ topos <span>\\(\\mathcal {E}\\)</span>, there is a hyperconnected geometric morphism <span>\\({p_X : \\mathcal {E}/X \\rightarrow \\mathcal S(X)}\\)</span> from the slice over <i>X</i> to the ‘petit’ topos of maps (over <i>X</i>) with discrete fibers. We show that if <i>p</i> is essential then <span>\\(p_X\\)</span> is essential for every <i>X</i>. The proof involves the idea of collapsing a connected subspace to a ‘basepoint’, as in Algebraic Topology, but formulated in topos-theoretic terms. In case <i>p</i> is local, we characterize when <span>\\({p_X}\\)</span> is local for every <i>X</i>. This is a very restrictive property, typical of toposes of spaces of dimension <span>\\({\\le 1}\\)</span>.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maps with Discrete Fibers and the Origin of Basepoints\",\"authors\":\"Matías Menni\",\"doi\":\"10.1007/s10485-022-09680-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({p : \\\\mathcal {E}\\\\rightarrow \\\\mathcal S}\\\\)</span> be a hyperconnected geometric morphism. For each <i>X</i> in the ‘gros’ topos <span>\\\\(\\\\mathcal {E}\\\\)</span>, there is a hyperconnected geometric morphism <span>\\\\({p_X : \\\\mathcal {E}/X \\\\rightarrow \\\\mathcal S(X)}\\\\)</span> from the slice over <i>X</i> to the ‘petit’ topos of maps (over <i>X</i>) with discrete fibers. We show that if <i>p</i> is essential then <span>\\\\(p_X\\\\)</span> is essential for every <i>X</i>. The proof involves the idea of collapsing a connected subspace to a ‘basepoint’, as in Algebraic Topology, but formulated in topos-theoretic terms. In case <i>p</i> is local, we characterize when <span>\\\\({p_X}\\\\)</span> is local for every <i>X</i>. This is a very restrictive property, typical of toposes of spaces of dimension <span>\\\\({\\\\le 1}\\\\)</span>.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-022-09680-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09680-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设\({p : \mathcal {E}\rightarrow \mathcal S}\)是一个超连通的几何态射。对于“大”拓扑\(\mathcal {E}\)中的每个X,从X上的切片到具有离散纤维的映射(X上)的“小”拓扑之间存在一个超连接的几何态射\({p_X : \mathcal {E}/X \rightarrow \mathcal S(X)}\)。我们证明,如果p是必要的,那么\(p_X\)对于每一个x都是必要的。这个证明涉及到将连通的子空间坍缩为一个“基点”的思想,就像在代数拓扑中一样,但用拓扑理论的术语来表述。在p是局部的情况下,我们描述\({p_X}\)对于每个x是局部的。这是一个非常严格的性质,典型的\({\le 1}\)维空间的拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maps with Discrete Fibers and the Origin of Basepoints

Let \({p : \mathcal {E}\rightarrow \mathcal S}\) be a hyperconnected geometric morphism. For each X in the ‘gros’ topos \(\mathcal {E}\), there is a hyperconnected geometric morphism \({p_X : \mathcal {E}/X \rightarrow \mathcal S(X)}\) from the slice over X to the ‘petit’ topos of maps (over X) with discrete fibers. We show that if p is essential then \(p_X\) is essential for every X. The proof involves the idea of collapsing a connected subspace to a ‘basepoint’, as in Algebraic Topology, but formulated in topos-theoretic terms. In case p is local, we characterize when \({p_X}\) is local for every X. This is a very restrictive property, typical of toposes of spaces of dimension \({\le 1}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信