弱对称伪黎曼零流形

IF 1.3 1区 数学 Q1 MATHEMATICS
J. Wolf, Zhiqi Chen
{"title":"弱对称伪黎曼零流形","authors":"J. Wolf, Zhiqi Chen","doi":"10.4310/jdg/1664378619","DOIUrl":null,"url":null,"abstract":"In an earlier paper we developed the classification of weakly symmetric pseudo--riemannian manifolds $G/H$ where $G$ is a semisimple Lie group and $H$ is a reductive subgroup. We derived the classification from the cases where $G$ is compact. As a consequence we obtained the classification of semisimple weakly symmetric manifolds of Lorentz signature $(n-1,1)$ and trans--lorentzian signature $(n-2,2)$. Here we work out the classification of weakly symmetric pseudo--riemannian nilmanifolds $G/H$ from the classification for the case $G = N\\rtimes H$ with $H$ compact and $N$ nilpotent. It turns out that there is a plethora of new examples that merit further study. Starting with that riemannian case, we see just when a given involutive automorphism of $H$ extends to an involutive automorphism of $G$, and we show that any two such extensions result in isometric pseudo--riemannian nilmanifolds. The results are tabulated in the last two sections of the paper.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Weakly symmetric pseudo–Riemannian nilmanifolds\",\"authors\":\"J. Wolf, Zhiqi Chen\",\"doi\":\"10.4310/jdg/1664378619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an earlier paper we developed the classification of weakly symmetric pseudo--riemannian manifolds $G/H$ where $G$ is a semisimple Lie group and $H$ is a reductive subgroup. We derived the classification from the cases where $G$ is compact. As a consequence we obtained the classification of semisimple weakly symmetric manifolds of Lorentz signature $(n-1,1)$ and trans--lorentzian signature $(n-2,2)$. Here we work out the classification of weakly symmetric pseudo--riemannian nilmanifolds $G/H$ from the classification for the case $G = N\\\\rtimes H$ with $H$ compact and $N$ nilpotent. It turns out that there is a plethora of new examples that merit further study. Starting with that riemannian case, we see just when a given involutive automorphism of $H$ extends to an involutive automorphism of $G$, and we show that any two such extensions result in isometric pseudo--riemannian nilmanifolds. The results are tabulated in the last two sections of the paper.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1664378619\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1664378619","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

在以前的一篇论文中,我们发展了弱对称伪黎曼流形$G/H$的分类,其中$G$是半单李群,$H$是约化子群。我们从$G$紧的情况推导出分类。由此我们得到了洛伦兹签名$(n-1,1)$和反洛伦兹签名$(n-2,2)$的半简单弱对称流形的分类。本文从$H$紧且$N$幂零的情况$G = N\r * H$的分类出发,给出了弱对称伪黎曼零流形$G/H$的分类。事实证明,有大量的新例子值得进一步研究。从黎曼情形开始,我们看到当一个给定的H$对合自同构扩展到G$对合自同构时,我们证明了任意两个这样的扩展都会产生等距伪黎曼零流形。结果列在论文的最后两部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly symmetric pseudo–Riemannian nilmanifolds
In an earlier paper we developed the classification of weakly symmetric pseudo--riemannian manifolds $G/H$ where $G$ is a semisimple Lie group and $H$ is a reductive subgroup. We derived the classification from the cases where $G$ is compact. As a consequence we obtained the classification of semisimple weakly symmetric manifolds of Lorentz signature $(n-1,1)$ and trans--lorentzian signature $(n-2,2)$. Here we work out the classification of weakly symmetric pseudo--riemannian nilmanifolds $G/H$ from the classification for the case $G = N\rtimes H$ with $H$ compact and $N$ nilpotent. It turns out that there is a plethora of new examples that merit further study. Starting with that riemannian case, we see just when a given involutive automorphism of $H$ extends to an involutive automorphism of $G$, and we show that any two such extensions result in isometric pseudo--riemannian nilmanifolds. The results are tabulated in the last two sections of the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信