外来核聚变系统的穿孔群

IF 1.1 Q1 MATHEMATICS
Ellen Henke, Assaf Libman, J. Lynd
{"title":"外来核聚变系统的穿孔群","authors":"Ellen Henke, Assaf Libman, J. Lynd","doi":"10.1112/tlm3.12054","DOIUrl":null,"url":null,"abstract":"The transporter systems of Oliver and Ventura and the localities of Chermak are classes of algebraic structures that model the $p$-local structures of finite groups. Other than the transporter categories and localities of finite groups, important examples include centric, quasicentric, and subcentric linking systems for saturated fusion systems. These examples are however not defined in general on the full collection of subgroups of the Sylow group. We study here punctured groups, a short name for transporter systems or localities on the collection of nonidentity subgroups of a finite $p$-group. As an application of the existence of a punctured group, we show that the subgroup homology decomposition on the centric collection is sharp for the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it to show that the smallest Benson-Solomon exotic fusion system at the prime $2$ has a punctured group, while the others do not. As for exotic fusion systems at odd primes $p$, we survey several classes and find that in almost all cases, either the subcentric linking system is a punctured group for the system, or the system has no punctured group because the normalizer of some subgroup of order $p$ is exotic. Finally, we classify punctured groups restricting to the centric linking system for certain fusion systems on extraspecial $p$-groups of order $p^3$.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Punctured groups for exotic fusion systems\",\"authors\":\"Ellen Henke, Assaf Libman, J. Lynd\",\"doi\":\"10.1112/tlm3.12054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transporter systems of Oliver and Ventura and the localities of Chermak are classes of algebraic structures that model the $p$-local structures of finite groups. Other than the transporter categories and localities of finite groups, important examples include centric, quasicentric, and subcentric linking systems for saturated fusion systems. These examples are however not defined in general on the full collection of subgroups of the Sylow group. We study here punctured groups, a short name for transporter systems or localities on the collection of nonidentity subgroups of a finite $p$-group. As an application of the existence of a punctured group, we show that the subgroup homology decomposition on the centric collection is sharp for the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it to show that the smallest Benson-Solomon exotic fusion system at the prime $2$ has a punctured group, while the others do not. As for exotic fusion systems at odd primes $p$, we survey several classes and find that in almost all cases, either the subcentric linking system is a punctured group for the system, or the system has no punctured group because the normalizer of some subgroup of order $p$ is exotic. Finally, we classify punctured groups restricting to the centric linking system for certain fusion systems on extraspecial $p$-groups of order $p^3$.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

Oliver和Ventura的转运系统以及Chermak的局部是一类模拟有限群的$p$局部结构的代数结构。除了有限群的转运子类别和局部,重要的例子包括饱和聚变系统的中心、准中心和亚中心连接系统。但是,这些示例通常不是在Sylow组的子组的完整集合上定义的。本文研究了有限$p$-群的非恒等子群集合上的转运系统或位置的穿孔群。作为穿孔群存在性的一个应用,我们证明了该融合系统在中心集合上的子群同调分解是尖锐的。我们还证明了刺穿群的一个信号函子定理,并利用它证明了最小的Benson-Solomon奇异融合系统在素数$2$处有刺穿群,而其他的则没有。对于奇素数下的奇异融合系统,我们研究了几个类,发现在几乎所有的情况下,要么子中心连接系统是系统的穿孔群,要么由于某个阶的子群的正则化是奇异的,系统没有穿孔群。最后,在p^3阶群上,对特定的融合系统进行了局限于中心连接系统的穿孔群分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Punctured groups for exotic fusion systems
The transporter systems of Oliver and Ventura and the localities of Chermak are classes of algebraic structures that model the $p$-local structures of finite groups. Other than the transporter categories and localities of finite groups, important examples include centric, quasicentric, and subcentric linking systems for saturated fusion systems. These examples are however not defined in general on the full collection of subgroups of the Sylow group. We study here punctured groups, a short name for transporter systems or localities on the collection of nonidentity subgroups of a finite $p$-group. As an application of the existence of a punctured group, we show that the subgroup homology decomposition on the centric collection is sharp for the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it to show that the smallest Benson-Solomon exotic fusion system at the prime $2$ has a punctured group, while the others do not. As for exotic fusion systems at odd primes $p$, we survey several classes and find that in almost all cases, either the subcentric linking system is a punctured group for the system, or the system has no punctured group because the normalizer of some subgroup of order $p$ is exotic. Finally, we classify punctured groups restricting to the centric linking system for certain fusion systems on extraspecial $p$-groups of order $p^3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信