一般空间上的接触过程。图和流形上的模型

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
S. Pirogov, E. Zhizhina
{"title":"一般空间上的接触过程。图和流形上的模型","authors":"S. Pirogov, E. Zhizhina","doi":"10.1214/22-ejp765","DOIUrl":null,"url":null,"abstract":"The contact process is a particular case of birth-and-death processes on infinite particle configurations. We consider the contact processes on locally compact separable metric spaces. We prove the existence of a one-parameter set of invariant measures in the critical regime under the condition imposed on the associated Markov jump process. This condition means that any pair of independent trajectories of this jump process run away from each other. The general scheme can be applied to the contact process on the lattice in a heterogeneous and random environments as well as to the contact process on graphs and on manifolds.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact processes on general spaces. Models on graphs and on manifolds\",\"authors\":\"S. Pirogov, E. Zhizhina\",\"doi\":\"10.1214/22-ejp765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contact process is a particular case of birth-and-death processes on infinite particle configurations. We consider the contact processes on locally compact separable metric spaces. We prove the existence of a one-parameter set of invariant measures in the critical regime under the condition imposed on the associated Markov jump process. This condition means that any pair of independent trajectories of this jump process run away from each other. The general scheme can be applied to the contact process on the lattice in a heterogeneous and random environments as well as to the contact process on graphs and on manifolds.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejp765\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp765","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

接触过程是有限粒子配置中出生和死亡过程的一种特殊情况。我们考虑局部紧致可分离度量空间上的接触过程。我们证明了在关联马尔可夫跳跃过程的条件下,在临界状态下存在一组不变测度的单参数集。这个条件意味着这个跳跃过程的任何一对独立的轨迹都会相互远离。一般方案可以应用于非均匀和随机环境中晶格上的接触过程,也可以应用于图和流形上的接触进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contact processes on general spaces. Models on graphs and on manifolds
The contact process is a particular case of birth-and-death processes on infinite particle configurations. We consider the contact processes on locally compact separable metric spaces. We prove the existence of a one-parameter set of invariant measures in the critical regime under the condition imposed on the associated Markov jump process. This condition means that any pair of independent trajectories of this jump process run away from each other. The general scheme can be applied to the contact process on the lattice in a heterogeneous and random environments as well as to the contact process on graphs and on manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信