切口对南方松三层交叉层合板刚度和强度的影响

IF 1.1 4区 农林科学 Q3 FORESTRY
L. M. Spinelli Correa, R. Shmulsky, R. Ross
{"title":"切口对南方松三层交叉层合板刚度和强度的影响","authors":"L. M. Spinelli Correa, R. Shmulsky, R. Ross","doi":"10.13073/fpj-d-22-00071","DOIUrl":null,"url":null,"abstract":"\n Considering the high demand for housing and the ongoing environmental issues our society faces, it's crucial to opt for more ecofriendly materials for building purposes. In that scenario, engineered wood products play an important role as they are not only based on a sustainable material but also can reduce the carbon footprint from construction. Cross-laminated timber (CLT) is one of the products that could expand wood products use while keeping up with low and mid-rise building needs. Although CLT use has been expanding in the United States for the last few years, there is still a high necessity for understanding this composite behavior. One of those needs is assessing the effect of notching on the panels and measuring strength reduction as well as possible reinforcement methods. The goal of this project was to evaluate the performance of CLT panels focusing on strength and stiffness properties. Mechanical bending testing of three-ply southern pine CLT samples was performed to evaluate the influence of notches and stitching reinforcement on panels. The strength reduction caused by notching was successfully measured. Control samples supported significantly higher loads than notched samples. However, it was found that the deeper the notch, the more effective the stitching can be regarding strength. Control samples presented cross-grain tension and splintering tension failure modes, whereas notched samples presented simple tension failure mode. The findings of this work are of great value toward updating manufacturing, design, and use criteria for notched CLT panels and can be potentially used in future building codes.","PeriodicalId":12387,"journal":{"name":"Forest Products Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Notching on Three-Ply Southern Pine Cross-Laminated Timber Panel Stiffness and Strength\",\"authors\":\"L. M. Spinelli Correa, R. Shmulsky, R. Ross\",\"doi\":\"10.13073/fpj-d-22-00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Considering the high demand for housing and the ongoing environmental issues our society faces, it's crucial to opt for more ecofriendly materials for building purposes. In that scenario, engineered wood products play an important role as they are not only based on a sustainable material but also can reduce the carbon footprint from construction. Cross-laminated timber (CLT) is one of the products that could expand wood products use while keeping up with low and mid-rise building needs. Although CLT use has been expanding in the United States for the last few years, there is still a high necessity for understanding this composite behavior. One of those needs is assessing the effect of notching on the panels and measuring strength reduction as well as possible reinforcement methods. The goal of this project was to evaluate the performance of CLT panels focusing on strength and stiffness properties. Mechanical bending testing of three-ply southern pine CLT samples was performed to evaluate the influence of notches and stitching reinforcement on panels. The strength reduction caused by notching was successfully measured. Control samples supported significantly higher loads than notched samples. However, it was found that the deeper the notch, the more effective the stitching can be regarding strength. Control samples presented cross-grain tension and splintering tension failure modes, whereas notched samples presented simple tension failure mode. The findings of this work are of great value toward updating manufacturing, design, and use criteria for notched CLT panels and can be potentially used in future building codes.\",\"PeriodicalId\":12387,\"journal\":{\"name\":\"Forest Products Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Products Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13073/fpj-d-22-00071\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Products Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13073/fpj-d-22-00071","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到对住房的高需求和我们社会面临的持续环境问题,选择更环保的建筑材料至关重要。在这种情况下,工程木制品发挥着重要作用,因为它们不仅基于可持续材料,而且可以减少建筑的碳足迹。交叉层压木材(CLT)是一种可以扩大木制品使用范围,同时满足中低层建筑需求的产品。尽管CLT的使用在过去几年中在美国不断扩大,但理解这种复合行为仍然是非常必要的。其中一个需求是评估切口对面板的影响,测量强度降低以及可能的加固方法。该项目的目标是评估CLT面板的性能,重点关注强度和刚度特性。对三层南方松CLT样品进行了机械弯曲试验,以评估切口和缝合补强对面板的影响。成功地测量了缺口引起的强度降低。对照样品的负载明显高于缺口样品。然而,发现切口越深,缝合在强度方面就越有效。对照样品呈现交叉晶粒张力和碎裂张力失效模式,而缺口样品呈现简单张力失效模式。这项工作的发现对更新缺口CLT面板的制造、设计和使用标准具有重要价值,并可用于未来的建筑规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Notching on Three-Ply Southern Pine Cross-Laminated Timber Panel Stiffness and Strength
Considering the high demand for housing and the ongoing environmental issues our society faces, it's crucial to opt for more ecofriendly materials for building purposes. In that scenario, engineered wood products play an important role as they are not only based on a sustainable material but also can reduce the carbon footprint from construction. Cross-laminated timber (CLT) is one of the products that could expand wood products use while keeping up with low and mid-rise building needs. Although CLT use has been expanding in the United States for the last few years, there is still a high necessity for understanding this composite behavior. One of those needs is assessing the effect of notching on the panels and measuring strength reduction as well as possible reinforcement methods. The goal of this project was to evaluate the performance of CLT panels focusing on strength and stiffness properties. Mechanical bending testing of three-ply southern pine CLT samples was performed to evaluate the influence of notches and stitching reinforcement on panels. The strength reduction caused by notching was successfully measured. Control samples supported significantly higher loads than notched samples. However, it was found that the deeper the notch, the more effective the stitching can be regarding strength. Control samples presented cross-grain tension and splintering tension failure modes, whereas notched samples presented simple tension failure mode. The findings of this work are of great value toward updating manufacturing, design, and use criteria for notched CLT panels and can be potentially used in future building codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Products Journal
Forest Products Journal 工程技术-材料科学:纸与木材
CiteScore
2.10
自引率
11.10%
发文量
30
审稿时长
6-12 weeks
期刊介绍: Forest Products Journal (FPJ) is the source of information for industry leaders, researchers, teachers, students, and everyone interested in today''s forest products industry. The Forest Products Journal is well respected for publishing high-quality peer-reviewed technical research findings at the applied or practical level that reflect the current state of wood science and technology. Articles suitable as Technical Notes are brief notes (generally 1,200 words or less) that describe new or improved equipment or techniques; report on findings produced as by-products of major studies; or outline progress to date on long-term projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信