盛行风与云杉芽虫爆发:一个反应-扩散-平流模型

IF 0.4 Q4 MATHEMATICS, APPLIED
Abby Anderson, O. Vasilyeva
{"title":"盛行风与云杉芽虫爆发:一个反应-扩散-平流模型","authors":"Abby Anderson, O. Vasilyeva","doi":"10.5206/mase/14112","DOIUrl":null,"url":null,"abstract":"We extend the classical reaction-diffusion model for spatial population dynamics of spruce budworm on a finite domain with hostile boundary conditions by including an advection term representing biased unidirectional movement of individuals due to a prevailing wind. We use phase-plane techniques to establish existence of a critical value of advection speed that prevents outbreak solutions on any finite domain while possibly allowing an endemic solution. We obtain lower and upper bounds for this critical advection value in terms of biological parameters involved in the reaction term. We also perform numerical simulations to illustrate the effect of advection on the dependence of the domain size on the maximal population density of a steady state solution and on critical domain sizes for endemic and outbreak solutions. The results are also applicable to other ecological settings (rivers, climate change) where a logistically growing population is subject to predation by a generalist, diffusion and biased movement.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prevailing winds and spruce budworm outbreaks: a reaction-diffusion-advection model\",\"authors\":\"Abby Anderson, O. Vasilyeva\",\"doi\":\"10.5206/mase/14112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the classical reaction-diffusion model for spatial population dynamics of spruce budworm on a finite domain with hostile boundary conditions by including an advection term representing biased unidirectional movement of individuals due to a prevailing wind. We use phase-plane techniques to establish existence of a critical value of advection speed that prevents outbreak solutions on any finite domain while possibly allowing an endemic solution. We obtain lower and upper bounds for this critical advection value in terms of biological parameters involved in the reaction term. We also perform numerical simulations to illustrate the effect of advection on the dependence of the domain size on the maximal population density of a steady state solution and on critical domain sizes for endemic and outbreak solutions. The results are also applicable to other ecological settings (rivers, climate change) where a logistically growing population is subject to predation by a generalist, diffusion and biased movement.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/14112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/14112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在具有敌对边界条件的有限域上,我们扩展了经典的反应扩散模型,加入了一个平流项,表示由于盛行风而导致的个体有偏的单向运动。我们使用相平面技术来建立平流速度临界值的存在性,该临界值可以在任何有限域上阻止爆发解决方案,同时可能允许地方性解决方案。根据反应项中涉及的生物参数,我们得到了这个临界平流值的下界和上界。我们还进行了数值模拟,以说明平流对区域大小对稳态解决方案的最大种群密度和流行病和爆发解决方案的临界区域大小的依赖性的影响。研究结果也适用于其他生态环境(河流、气候变化),在这些环境中,逻辑上不断增长的人口会受到通才、扩散和偏颇运动的捕食。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prevailing winds and spruce budworm outbreaks: a reaction-diffusion-advection model
We extend the classical reaction-diffusion model for spatial population dynamics of spruce budworm on a finite domain with hostile boundary conditions by including an advection term representing biased unidirectional movement of individuals due to a prevailing wind. We use phase-plane techniques to establish existence of a critical value of advection speed that prevents outbreak solutions on any finite domain while possibly allowing an endemic solution. We obtain lower and upper bounds for this critical advection value in terms of biological parameters involved in the reaction term. We also perform numerical simulations to illustrate the effect of advection on the dependence of the domain size on the maximal population density of a steady state solution and on critical domain sizes for endemic and outbreak solutions. The results are also applicable to other ecological settings (rivers, climate change) where a logistically growing population is subject to predation by a generalist, diffusion and biased movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信