无扭转部分可被平凡Brauer群整除的域

IF 0.5 Q3 MATHEMATICS
R. Fallah-Moghaddam
{"title":"无扭转部分可被平凡Brauer群整除的域","authors":"R. Fallah-Moghaddam","doi":"10.24330/ieja.1144156","DOIUrl":null,"url":null,"abstract":"Let $F_0$ be an absolutely algebraic field of characteristic $p>0$ and \n$\\kappa$ an infinite cardinal. It is shown that there exists a \nfield $F$ such that $F^*\\cong F^*_0\\oplus(\\oplus_\\kappa \n\\mathbb{Q})$ with $Br(F)=\\{0\\}$. Let $L$ be an algebraic closure \nof $F$. Then for any finite subextension $K$ of $L/F$, we have \n$K^*\\cong T(K^*)\\oplus(\\oplus_\\kappa \\mathbb{Q})$, where $T(K^*)$ \nis the group of torsion elements of $K^*$. In addition, \n$Br(K)=\\{0\\}$ and $[K:F]=[T(K^*) \\cup \\{0\\}:F_0]$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fields whose torsion free parts divisible with trivial Brauer group\",\"authors\":\"R. Fallah-Moghaddam\",\"doi\":\"10.24330/ieja.1144156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F_0$ be an absolutely algebraic field of characteristic $p>0$ and \\n$\\\\kappa$ an infinite cardinal. It is shown that there exists a \\nfield $F$ such that $F^*\\\\cong F^*_0\\\\oplus(\\\\oplus_\\\\kappa \\n\\\\mathbb{Q})$ with $Br(F)=\\\\{0\\\\}$. Let $L$ be an algebraic closure \\nof $F$. Then for any finite subextension $K$ of $L/F$, we have \\n$K^*\\\\cong T(K^*)\\\\oplus(\\\\oplus_\\\\kappa \\\\mathbb{Q})$, where $T(K^*)$ \\nis the group of torsion elements of $K^*$. In addition, \\n$Br(K)=\\\\{0\\\\}$ and $[K:F]=[T(K^*) \\\\cup \\\\{0\\\\}:F_0]$.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1144156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1144156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$F_0$为特征为$p>0$的绝对代数域,$\kappa$为无限基数。结果表明,存在一个域$F$,使得$F^*\cong F^*_0\oplus(\oplus_\kappa \mathbb{Q})$与$Br(F)=\{0\}$。设$L$为$F$的代数闭包。然后对于$L/F$的任意有限子扩展$K$,我们有$K^*\cong T(K^*)\oplus(\oplus_\kappa \mathbb{Q})$,其中$T(K^*)$是$K^*$的扭转单元群。此外,还有$Br(K)=\{0\}$和$[K:F]=[T(K^*) \cup \{0\}:F_0]$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fields whose torsion free parts divisible with trivial Brauer group
Let $F_0$ be an absolutely algebraic field of characteristic $p>0$ and $\kappa$ an infinite cardinal. It is shown that there exists a field $F$ such that $F^*\cong F^*_0\oplus(\oplus_\kappa \mathbb{Q})$ with $Br(F)=\{0\}$. Let $L$ be an algebraic closure of $F$. Then for any finite subextension $K$ of $L/F$, we have $K^*\cong T(K^*)\oplus(\oplus_\kappa \mathbb{Q})$, where $T(K^*)$ is the group of torsion elements of $K^*$. In addition, $Br(K)=\{0\}$ and $[K:F]=[T(K^*) \cup \{0\}:F_0]$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信