{"title":"钠团簇光电离的密度泛函处理:团簇大小和交换相关框架的影响","authors":"R. Shaik, H. R. Varma, H. Chakraborty","doi":"10.3390/atoms11080114","DOIUrl":null,"url":null,"abstract":"The ground state and photoionization properties of Nax (x = 20, 40, and 92) clusters are investigated using a method based on density functional theory (DFT) in a spherical jellium frame. Two different exchange–correlation treatments with the Gunnarsson–Lundqvist parametrization are used: (i) the electron self-interaction correction (SIC) scheme and (ii) the van Leeuwen–Baerends (LB94) scheme based on the gradient of the electron density. The shapes of the mean-field potentials and bound state properties, obtained in the two schemes, qualitatively agree, but differ in the details. The effect of the schemes on the photoionization dynamics, calculated in linear response time-dependent DFT is compared, in which the broader features are found to be universal. The general similarity of the results in SIC and LB94 demonstrates the reliability of DFT treatments. The study further elucidates the evolution of the ground state and ionization description as a function of the cluster size.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density Functional Treatment of Photoionization of Sodium Clusters: Effects of Cluster Size and Exchange–Correlation Framework\",\"authors\":\"R. Shaik, H. R. Varma, H. Chakraborty\",\"doi\":\"10.3390/atoms11080114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ground state and photoionization properties of Nax (x = 20, 40, and 92) clusters are investigated using a method based on density functional theory (DFT) in a spherical jellium frame. Two different exchange–correlation treatments with the Gunnarsson–Lundqvist parametrization are used: (i) the electron self-interaction correction (SIC) scheme and (ii) the van Leeuwen–Baerends (LB94) scheme based on the gradient of the electron density. The shapes of the mean-field potentials and bound state properties, obtained in the two schemes, qualitatively agree, but differ in the details. The effect of the schemes on the photoionization dynamics, calculated in linear response time-dependent DFT is compared, in which the broader features are found to be universal. The general similarity of the results in SIC and LB94 demonstrates the reliability of DFT treatments. The study further elucidates the evolution of the ground state and ionization description as a function of the cluster size.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11080114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11080114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Density Functional Treatment of Photoionization of Sodium Clusters: Effects of Cluster Size and Exchange–Correlation Framework
The ground state and photoionization properties of Nax (x = 20, 40, and 92) clusters are investigated using a method based on density functional theory (DFT) in a spherical jellium frame. Two different exchange–correlation treatments with the Gunnarsson–Lundqvist parametrization are used: (i) the electron self-interaction correction (SIC) scheme and (ii) the van Leeuwen–Baerends (LB94) scheme based on the gradient of the electron density. The shapes of the mean-field potentials and bound state properties, obtained in the two schemes, qualitatively agree, but differ in the details. The effect of the schemes on the photoionization dynamics, calculated in linear response time-dependent DFT is compared, in which the broader features are found to be universal. The general similarity of the results in SIC and LB94 demonstrates the reliability of DFT treatments. The study further elucidates the evolution of the ground state and ionization description as a function of the cluster size.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions