{"title":"高光谱图像分类的波段选择技术综述","authors":"S. Sawant, M. Prabukumar","doi":"10.1255/jsi.2020.a5","DOIUrl":null,"url":null,"abstract":"Hyperspectral images usually contain hundreds of contiguous spectral bands, which can precisely discriminate the various spectrally similar classes. However, such high-dimensional data also contain highly correlated and irrelevant information, leading to the curse of dimensionality (also called the Hughes phenomenon). It is necessary to reduce these bands before further analysis, such as land cover classification and target detection. Band selection is an effective way to reduce the size of hyperspectral data and to overcome the curse of the dimensionality problem in ground object classification. Focusing on the classification task, this article provides an extensive and comprehensive survey on band selection techniques describing the categorisation of methods, methodology used, different searching approaches and various technical difficulties, as well as their performances. Our purpose is to highlight the progress attained in band selection techniques for hyperspectral image classification and to identify possible avenues for future work, in order to achieve better performance in real-time operation.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A survey of band selection techniques for hyperspectral image classification\",\"authors\":\"S. Sawant, M. Prabukumar\",\"doi\":\"10.1255/jsi.2020.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images usually contain hundreds of contiguous spectral bands, which can precisely discriminate the various spectrally similar classes. However, such high-dimensional data also contain highly correlated and irrelevant information, leading to the curse of dimensionality (also called the Hughes phenomenon). It is necessary to reduce these bands before further analysis, such as land cover classification and target detection. Band selection is an effective way to reduce the size of hyperspectral data and to overcome the curse of the dimensionality problem in ground object classification. Focusing on the classification task, this article provides an extensive and comprehensive survey on band selection techniques describing the categorisation of methods, methodology used, different searching approaches and various technical difficulties, as well as their performances. Our purpose is to highlight the progress attained in band selection techniques for hyperspectral image classification and to identify possible avenues for future work, in order to achieve better performance in real-time operation.\",\"PeriodicalId\":37385,\"journal\":{\"name\":\"Journal of Spectral Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/jsi.2020.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
A survey of band selection techniques for hyperspectral image classification
Hyperspectral images usually contain hundreds of contiguous spectral bands, which can precisely discriminate the various spectrally similar classes. However, such high-dimensional data also contain highly correlated and irrelevant information, leading to the curse of dimensionality (also called the Hughes phenomenon). It is necessary to reduce these bands before further analysis, such as land cover classification and target detection. Band selection is an effective way to reduce the size of hyperspectral data and to overcome the curse of the dimensionality problem in ground object classification. Focusing on the classification task, this article provides an extensive and comprehensive survey on band selection techniques describing the categorisation of methods, methodology used, different searching approaches and various technical difficulties, as well as their performances. Our purpose is to highlight the progress attained in band selection techniques for hyperspectral image classification and to identify possible avenues for future work, in order to achieve better performance in real-time operation.
期刊介绍:
JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.