广义交换子与Moore-Penrose逆

IF 0.7 4区 数学 Q2 Mathematics
I. Pressman
{"title":"广义交换子与Moore-Penrose逆","authors":"I. Pressman","doi":"10.13001/ela.2021.4991","DOIUrl":null,"url":null,"abstract":"This work studies the kernel of a linear operator associated with the generalized k-fold commutator. Given a set $\\mathfrak{A}= \\left\\{ A_{1}, \\ldots ,A_{k} \\right\\}$ of real $n \\times n$ matrices, the commutator is denoted by$[A_{1}| \\ldots |A_{k}]$. For a fixed set of matrices $\\mathfrak{A}$ we introduce a multilinear skew-symmetric linear operator $T_{\\mathfrak{A}}(X)=T(A_{1}, \\ldots ,A_{k})[X]=[A_{1}| \\ldots |A_{k} |X] $. For fixed $n$ and $k \\ge 2n-1, \\; T_{\\mathfrak{A}} \\equiv 0$ by the Amitsur--Levitski Theorem [2] , which motivated this work. The matrix representation $M$ of the linear transformation $T$ is called the k-commutator matrix. $M$ has interesting properties, e.g., it is a commutator; for $k$ odd, there is a permutation of the rows of $M$ that makes it skew-symmetric. For both $k$ and $n$ odd, a provocative matrix $\\mathcal{S}$ appears in the kernel of $T$. By using the Moore--Penrose inverse and introducing a conjecture about the rank of $M$, the entries of $\\mathcal{S}$ are shown to be quotients of polynomials in the entries of the matrices in $\\mathfrak{A}$. One case of the conjecture has been recently proven by Brassil. The Moore--Penrose inverse provides a full rank decomposition of $M$.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Commutators and the Moore-Penrose Inverse\",\"authors\":\"I. Pressman\",\"doi\":\"10.13001/ela.2021.4991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the kernel of a linear operator associated with the generalized k-fold commutator. Given a set $\\\\mathfrak{A}= \\\\left\\\\{ A_{1}, \\\\ldots ,A_{k} \\\\right\\\\}$ of real $n \\\\times n$ matrices, the commutator is denoted by$[A_{1}| \\\\ldots |A_{k}]$. For a fixed set of matrices $\\\\mathfrak{A}$ we introduce a multilinear skew-symmetric linear operator $T_{\\\\mathfrak{A}}(X)=T(A_{1}, \\\\ldots ,A_{k})[X]=[A_{1}| \\\\ldots |A_{k} |X] $. For fixed $n$ and $k \\\\ge 2n-1, \\\\; T_{\\\\mathfrak{A}} \\\\equiv 0$ by the Amitsur--Levitski Theorem [2] , which motivated this work. The matrix representation $M$ of the linear transformation $T$ is called the k-commutator matrix. $M$ has interesting properties, e.g., it is a commutator; for $k$ odd, there is a permutation of the rows of $M$ that makes it skew-symmetric. For both $k$ and $n$ odd, a provocative matrix $\\\\mathcal{S}$ appears in the kernel of $T$. By using the Moore--Penrose inverse and introducing a conjecture about the rank of $M$, the entries of $\\\\mathcal{S}$ are shown to be quotients of polynomials in the entries of the matrices in $\\\\mathfrak{A}$. One case of the conjecture has been recently proven by Brassil. The Moore--Penrose inverse provides a full rank decomposition of $M$.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2021.4991\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.4991","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了与广义k重交换子相关的线性算子的核。给定实$n\乘n$矩阵的集合$\mathfrak{a}=\left\{a_{1},\ldots,a_{k}\right\}$,换向器由$[a_{1}|\ldots|a_{k}]$表示。对于矩阵$\mathfrak{a}$的固定集合,我们引入了一个多线性斜对称线性算子$T_。对于固定的$n$和$k\ge 2n-1,\;由Amitsur-Levitski定理[2]提出的T_。线性变换$T$的矩阵表示$M$称为k-交换矩阵$M$具有有趣的性质,例如,它是一个换向器;对于$k$odd,$M$的行有一个排列,使其斜对称。对于$k$和$n$odd,在$T$的内核中都会出现一个挑衅性矩阵$\mathcal{S}$。通过使用Moore-Penrose逆,并引入关于$M$秩的猜想,$\mathcal{S}$的项被证明是$\mathfrak{a}$中矩阵项中多项式的商。Brassil最近证明了这个猜想的一个例子。Moore-Penrose逆提供了$M$的全秩分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Commutators and the Moore-Penrose Inverse
This work studies the kernel of a linear operator associated with the generalized k-fold commutator. Given a set $\mathfrak{A}= \left\{ A_{1}, \ldots ,A_{k} \right\}$ of real $n \times n$ matrices, the commutator is denoted by$[A_{1}| \ldots |A_{k}]$. For a fixed set of matrices $\mathfrak{A}$ we introduce a multilinear skew-symmetric linear operator $T_{\mathfrak{A}}(X)=T(A_{1}, \ldots ,A_{k})[X]=[A_{1}| \ldots |A_{k} |X] $. For fixed $n$ and $k \ge 2n-1, \; T_{\mathfrak{A}} \equiv 0$ by the Amitsur--Levitski Theorem [2] , which motivated this work. The matrix representation $M$ of the linear transformation $T$ is called the k-commutator matrix. $M$ has interesting properties, e.g., it is a commutator; for $k$ odd, there is a permutation of the rows of $M$ that makes it skew-symmetric. For both $k$ and $n$ odd, a provocative matrix $\mathcal{S}$ appears in the kernel of $T$. By using the Moore--Penrose inverse and introducing a conjecture about the rank of $M$, the entries of $\mathcal{S}$ are shown to be quotients of polynomials in the entries of the matrices in $\mathfrak{A}$. One case of the conjecture has been recently proven by Brassil. The Moore--Penrose inverse provides a full rank decomposition of $M$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信