{"title":"浓缩单宁对赛恩芬青贮好氧暴露后氮分布和代谢组的影响","authors":"Rongzheng Huang, Fan-fan Zhang, Xuzhe Wang, C. Ma","doi":"10.3390/fermentation9080739","DOIUrl":null,"url":null,"abstract":"(1) Background: Previous studies have indicated that proteolysis is inhibited by the condensed tannins (CTs) that are present during sainfoin ensiling. Whether inhibiting this effect of CTs on proteolysis is functional during aerobic exposure is still unclear. (2) Methods: the present study investigated the effect of CTs on metabolite composition during the aerobic exposure of sainfoin silage via the use of polyethylene glycol (PEG), leading to the inactivation of CTs. (3) Results: The neutral detergent-insoluble protein (NDIP) and acid detergent-insoluble protein concentrations were both more concentrated in the control group than in the PEG-treated group. There were 587 and 651 different metabolites present in the control and PEG-treated groups after 3 and 7 days, respectively, of aerobic exposure of silage. Flavonoids (72 metabolites) were the most abundant among these different metabolites. The addition of PEG upregulated histidine, threonine, asparagine, tryptophan, and glutamine, but downregulated phenylalanine. The relative abundances of Lactococcus, Fructobacillus, Enterobacter, Cutibacterium, Citrobacter, and Rosenbergiella differed significantly between the control and PEG-treated groups (p < 0.05); all of these bacteria showed significant correlation with some of the 50 most abundant metabolites. (4) Conclusions: the results suggest that the antioxidant status of the silage increased and inhibited the activity of a variety of bacteria that coexist with CTs, and decreased the production of certain amino acids after the aerobic exposure of silage.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Condensed Tannins on Nitrogen Distribution and Metabolome after Aerobic Exposure of Sainfoin Silage\",\"authors\":\"Rongzheng Huang, Fan-fan Zhang, Xuzhe Wang, C. Ma\",\"doi\":\"10.3390/fermentation9080739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(1) Background: Previous studies have indicated that proteolysis is inhibited by the condensed tannins (CTs) that are present during sainfoin ensiling. Whether inhibiting this effect of CTs on proteolysis is functional during aerobic exposure is still unclear. (2) Methods: the present study investigated the effect of CTs on metabolite composition during the aerobic exposure of sainfoin silage via the use of polyethylene glycol (PEG), leading to the inactivation of CTs. (3) Results: The neutral detergent-insoluble protein (NDIP) and acid detergent-insoluble protein concentrations were both more concentrated in the control group than in the PEG-treated group. There were 587 and 651 different metabolites present in the control and PEG-treated groups after 3 and 7 days, respectively, of aerobic exposure of silage. Flavonoids (72 metabolites) were the most abundant among these different metabolites. The addition of PEG upregulated histidine, threonine, asparagine, tryptophan, and glutamine, but downregulated phenylalanine. The relative abundances of Lactococcus, Fructobacillus, Enterobacter, Cutibacterium, Citrobacter, and Rosenbergiella differed significantly between the control and PEG-treated groups (p < 0.05); all of these bacteria showed significant correlation with some of the 50 most abundant metabolites. (4) Conclusions: the results suggest that the antioxidant status of the silage increased and inhibited the activity of a variety of bacteria that coexist with CTs, and decreased the production of certain amino acids after the aerobic exposure of silage.\",\"PeriodicalId\":48535,\"journal\":{\"name\":\"Fermentation-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation9080739\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9080739","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effect of Condensed Tannins on Nitrogen Distribution and Metabolome after Aerobic Exposure of Sainfoin Silage
(1) Background: Previous studies have indicated that proteolysis is inhibited by the condensed tannins (CTs) that are present during sainfoin ensiling. Whether inhibiting this effect of CTs on proteolysis is functional during aerobic exposure is still unclear. (2) Methods: the present study investigated the effect of CTs on metabolite composition during the aerobic exposure of sainfoin silage via the use of polyethylene glycol (PEG), leading to the inactivation of CTs. (3) Results: The neutral detergent-insoluble protein (NDIP) and acid detergent-insoluble protein concentrations were both more concentrated in the control group than in the PEG-treated group. There were 587 and 651 different metabolites present in the control and PEG-treated groups after 3 and 7 days, respectively, of aerobic exposure of silage. Flavonoids (72 metabolites) were the most abundant among these different metabolites. The addition of PEG upregulated histidine, threonine, asparagine, tryptophan, and glutamine, but downregulated phenylalanine. The relative abundances of Lactococcus, Fructobacillus, Enterobacter, Cutibacterium, Citrobacter, and Rosenbergiella differed significantly between the control and PEG-treated groups (p < 0.05); all of these bacteria showed significant correlation with some of the 50 most abundant metabolites. (4) Conclusions: the results suggest that the antioxidant status of the silage increased and inhibited the activity of a variety of bacteria that coexist with CTs, and decreased the production of certain amino acids after the aerobic exposure of silage.
期刊介绍:
Fermentation-Basel is an international open access journal published by MDPI, focusing on fermentation-related research, including new and emerging products, processes and technologies, such as biopharmaceuticals and biotech drugs. The journal enjoys a good reputation in the academic community and provides a high-impact forum for researchers in the field of bioengineering and applied microbiology.