{"title":"有限生成投影模的清洁余代数和清洁余模","authors":"N. P. Puspita, I. E. Wijayanti, B. Surodjo","doi":"10.12958/ADM1415","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P∗ is the set of R-module homomorphism from P to R, then the tensor product P∗⊗RP can be considered as an R-coalgebra. Furthermore, P and P∗ is a comodule over coalgebra P∗⊗RP. Using the Morita context, this paper give sufficient conditions of clean coalgebra P∗⊗RP and clean P∗⊗RP-comodule P and P∗. These sufficient conditions are determined by the conditions of module P and ring R.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clean coalgebras and clean comodules of finitely generated projective modules\",\"authors\":\"N. P. Puspita, I. E. Wijayanti, B. Surodjo\",\"doi\":\"10.12958/ADM1415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P∗ is the set of R-module homomorphism from P to R, then the tensor product P∗⊗RP can be considered as an R-coalgebra. Furthermore, P and P∗ is a comodule over coalgebra P∗⊗RP. Using the Morita context, this paper give sufficient conditions of clean coalgebra P∗⊗RP and clean P∗⊗RP-comodule P and P∗. These sufficient conditions are determined by the conditions of module P and ring R.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/ADM1415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/ADM1415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Clean coalgebras and clean comodules of finitely generated projective modules
Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P∗ is the set of R-module homomorphism from P to R, then the tensor product P∗⊗RP can be considered as an R-coalgebra. Furthermore, P and P∗ is a comodule over coalgebra P∗⊗RP. Using the Morita context, this paper give sufficient conditions of clean coalgebra P∗⊗RP and clean P∗⊗RP-comodule P and P∗. These sufficient conditions are determined by the conditions of module P and ring R.