焦耳加热对具有滑移流模型的拉伸/收缩薄板上稳定MHD对流微极流体的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A.P. Baitharu, S. Sahoo, G.C. Dash
{"title":"焦耳加热对具有滑移流模型的拉伸/收缩薄板上稳定MHD对流微极流体的影响","authors":"A.P. Baitharu, S. Sahoo, G.C. Dash","doi":"10.3329/jname.v18i2.55253","DOIUrl":null,"url":null,"abstract":"The effect of joule heating on steady two dimensional flow of an incompressible micropolar fluid over a flat deformable sheet is analyzed when the sheet is stretched with a slip in its own plane. The effects of first and second order slips with dissipative heat energy are considered in the present study. The numerical solution to coupled non-linear differential equations is obtained using the Runge-Kutta method of fourth order with shooting technique. The important findings of the present study are: Due to shrinking effect, temperature increases more than that of stretching which is analogous to contraction and expansion forming the basis of heat engine, transporting thermal energy to mechanical energy. The thermal buoyancy overpowers the inertia force. The second order slip is favorable for flow stability in both stretching and shrinking of the deformable surface.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Joule heating on steady MHD convective micropolar fluid over a stretching/shrinking sheet with slip flow model\",\"authors\":\"A.P. Baitharu, S. Sahoo, G.C. Dash\",\"doi\":\"10.3329/jname.v18i2.55253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of joule heating on steady two dimensional flow of an incompressible micropolar fluid over a flat deformable sheet is analyzed when the sheet is stretched with a slip in its own plane. The effects of first and second order slips with dissipative heat energy are considered in the present study. The numerical solution to coupled non-linear differential equations is obtained using the Runge-Kutta method of fourth order with shooting technique. The important findings of the present study are: Due to shrinking effect, temperature increases more than that of stretching which is analogous to contraction and expansion forming the basis of heat engine, transporting thermal energy to mechanical energy. The thermal buoyancy overpowers the inertia force. The second order slip is favorable for flow stability in both stretching and shrinking of the deformable surface.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i2.55253\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.55253","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

分析了焦耳加热对不可压缩微极流体在可变形平板上的二维稳定流动的影响。本研究考虑了一阶和二阶滑移对耗散热能的影响。采用四阶龙格-库塔法,结合射击技术,得到了耦合非线性微分方程的数值解。本研究的重要发现是:由于收缩效应,温度的升高大于拉伸效应,类似于收缩和膨胀形成热机的基础,将热能转化为机械能。热浮力压倒了惯性力。在可变形表面的拉伸和收缩过程中,二阶滑移都有利于流动的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Joule heating on steady MHD convective micropolar fluid over a stretching/shrinking sheet with slip flow model
The effect of joule heating on steady two dimensional flow of an incompressible micropolar fluid over a flat deformable sheet is analyzed when the sheet is stretched with a slip in its own plane. The effects of first and second order slips with dissipative heat energy are considered in the present study. The numerical solution to coupled non-linear differential equations is obtained using the Runge-Kutta method of fourth order with shooting technique. The important findings of the present study are: Due to shrinking effect, temperature increases more than that of stretching which is analogous to contraction and expansion forming the basis of heat engine, transporting thermal energy to mechanical energy. The thermal buoyancy overpowers the inertia force. The second order slip is favorable for flow stability in both stretching and shrinking of the deformable surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信