基于多通道多尺度神经网络的听力困难家庭监测系统声事件检测

IF 0.2 Q4 ACOUSTICS
Gi Yong Lee and Hyoung-Gook Kim
{"title":"基于多通道多尺度神经网络的听力困难家庭监测系统声事件检测","authors":"Gi Yong Lee and Hyoung-Gook Kim","doi":"10.7776/ASK.2020.39.6.600","DOIUrl":null,"url":null,"abstract":": In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"39 1","pages":"600-605"},"PeriodicalIF":0.2000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sound event detection based on multi-channel multi-scale neural networks for home monitoring system used by the hard-of-hearing\",\"authors\":\"Gi Yong Lee and Hyoung-Gook Kim\",\"doi\":\"10.7776/ASK.2020.39.6.600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":\"39 1\",\"pages\":\"600-605\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2020.39.6.600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.6.600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

:在本文中,我们提出了一种使用多通道多尺度神经网络的声音事件检测方法,用于听力受损者的声音传感家庭监测。在所提出的系统中,从家中的几个无线麦克风传感器中选择两个具有高信号质量的通道。从传感器信号中提取的三个特征(到达时间差、音高范围和通过将多尺度卷积神经网络应用于对数mel频谱图获得的输出)被应用于基于双向门控递归神经网络的分类器,以进一步提高声音事件检测的性能。检测到的声音事件结果与所选通道的传感器位置一起被转换成文本,并被提供给听力受损者。实验结果表明,该系统的声音事件检测方法优于现有方法,能够有效地向听力受损者传递声音信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sound event detection based on multi-channel multi-scale neural networks for home monitoring system used by the hard-of-hearing
: In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信