{"title":"基于序列数据集的集体异常检测方法综述","authors":"Xiaodi Huang, Po Yun, Zhongfeng Hu","doi":"10.4018/ijdwm.327363","DOIUrl":null,"url":null,"abstract":"Anomaly detection on sequence dataset typically focuses on the detection of collective anomalies, aiming to find anomalous patterns consisting of sequences of data with specific relationships rather than individual observations. In this survey, existing studies are summarized to align with temporal sequence dataset and spatial sequence dataset. For the first category, the detection can be subdivided into symbolic dataset based and time series dataset based, which include similarity, probabilistic, and trend approaches. For the second category, it can be subdivided into homogeneous datasets based heterogeneous datasets based, which include multi-dataset fusion and joint approaches. Compared to the state-of-the-art survey papers, the contribution of this paper lies in providing a deep analysis of various representations of collective anomaly in different application field and their corresponding detection methods, representative techniques. As a result, practitioners can receive some guidance for selecting the most suitable methods for their particular case.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Collective Anomaly Detection on Sequence Dataset\",\"authors\":\"Xiaodi Huang, Po Yun, Zhongfeng Hu\",\"doi\":\"10.4018/ijdwm.327363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection on sequence dataset typically focuses on the detection of collective anomalies, aiming to find anomalous patterns consisting of sequences of data with specific relationships rather than individual observations. In this survey, existing studies are summarized to align with temporal sequence dataset and spatial sequence dataset. For the first category, the detection can be subdivided into symbolic dataset based and time series dataset based, which include similarity, probabilistic, and trend approaches. For the second category, it can be subdivided into homogeneous datasets based heterogeneous datasets based, which include multi-dataset fusion and joint approaches. Compared to the state-of-the-art survey papers, the contribution of this paper lies in providing a deep analysis of various representations of collective anomaly in different application field and their corresponding detection methods, representative techniques. As a result, practitioners can receive some guidance for selecting the most suitable methods for their particular case.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.327363\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.327363","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Survey of Collective Anomaly Detection on Sequence Dataset
Anomaly detection on sequence dataset typically focuses on the detection of collective anomalies, aiming to find anomalous patterns consisting of sequences of data with specific relationships rather than individual observations. In this survey, existing studies are summarized to align with temporal sequence dataset and spatial sequence dataset. For the first category, the detection can be subdivided into symbolic dataset based and time series dataset based, which include similarity, probabilistic, and trend approaches. For the second category, it can be subdivided into homogeneous datasets based heterogeneous datasets based, which include multi-dataset fusion and joint approaches. Compared to the state-of-the-art survey papers, the contribution of this paper lies in providing a deep analysis of various representations of collective anomaly in different application field and their corresponding detection methods, representative techniques. As a result, practitioners can receive some guidance for selecting the most suitable methods for their particular case.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving