分量线性幂和x条件

IF 0.3 4区 数学 Q4 MATHEMATICS
J. Herzog, T. Hibi, S. Moradi
{"title":"分量线性幂和x条件","authors":"J. Herzog, T. Hibi, S. Moradi","doi":"10.7146/math.scand.a-133265","DOIUrl":null,"url":null,"abstract":"Let $S=K[x_1,\\ldots,x_n]$ be the polynomial ring over a field and $A$ a standard graded $S$-algebra. In terms of the Gröbner basis of the defining ideal $J$ of $A$ we give a condition, called the $x$-condition, which implies that all graded components $A_k$ of $A$ have linear quotients and with additional assumptions are componentwise linear. A typical example of such an algebra is the Rees ring $\\mathcal{R}(I)$ of a graded ideal or the symmetric algebra $\\textrm{Sym}(M)$ of a module $M$. We apply our criterion to study certain symmetric algebras and the powers of vertex cover ideals of certain classes of graphs.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Componentwise linear powers and the $x$-condition\",\"authors\":\"J. Herzog, T. Hibi, S. Moradi\",\"doi\":\"10.7146/math.scand.a-133265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S=K[x_1,\\\\ldots,x_n]$ be the polynomial ring over a field and $A$ a standard graded $S$-algebra. In terms of the Gröbner basis of the defining ideal $J$ of $A$ we give a condition, called the $x$-condition, which implies that all graded components $A_k$ of $A$ have linear quotients and with additional assumptions are componentwise linear. A typical example of such an algebra is the Rees ring $\\\\mathcal{R}(I)$ of a graded ideal or the symmetric algebra $\\\\textrm{Sym}(M)$ of a module $M$. We apply our criterion to study certain symmetric algebras and the powers of vertex cover ideals of certain classes of graphs.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-133265\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-133265","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

设$S=K[x_1,\ldots,x_n]$是域上的多项式环,$ a $是标准的分级$S$-代数。根据定义理想$J$ ($A$)的Gröbner基,我们给出了一个条件,称为$x$-条件,它意味着$A$ ($A$)的所有分级分量$A_k$具有线性商,并且在附加假设下是分量线性的。这种代数的典型例子是一个分级理想的Rees环$\mathcal{R}(I)$或一个模$M$的对称代数$\textrm{Sym}(M)$。应用该判据研究了若干对称代数和若干图的顶点覆盖理想的幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Componentwise linear powers and the $x$-condition
Let $S=K[x_1,\ldots,x_n]$ be the polynomial ring over a field and $A$ a standard graded $S$-algebra. In terms of the Gröbner basis of the defining ideal $J$ of $A$ we give a condition, called the $x$-condition, which implies that all graded components $A_k$ of $A$ have linear quotients and with additional assumptions are componentwise linear. A typical example of such an algebra is the Rees ring $\mathcal{R}(I)$ of a graded ideal or the symmetric algebra $\textrm{Sym}(M)$ of a module $M$. We apply our criterion to study certain symmetric algebras and the powers of vertex cover ideals of certain classes of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信