具有不定势的薛定谔-基尔霍夫方程非平凡解的存在性

IF 0.8 4区 数学 Q2 MATHEMATICS
Shuai Jiang, Li Yin
{"title":"具有不定势的薛定谔-基尔霍夫方程非平凡解的存在性","authors":"Shuai Jiang, Li Yin","doi":"10.58997/ejde.2023.13","DOIUrl":null,"url":null,"abstract":"We consider a class of Schrodinger-Kirchhoff equations in R3 with a general nonlinearity g and coercive sign-changing potential V so that the Schrodinger operator -aΔ +V is indefinite. The nonlinearity considered here satisfies the Ambrosetti-Rabinowitz type condition g(t)t≥μ G(t)>0 with μ>3. We obtain the existence of nontrivial solutions for this problem via Morse theory.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of nontrivial solutions for Schrodinger-Kirchhoff equations with indefinite potentials\",\"authors\":\"Shuai Jiang, Li Yin\",\"doi\":\"10.58997/ejde.2023.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of Schrodinger-Kirchhoff equations in R3 with a general nonlinearity g and coercive sign-changing potential V so that the Schrodinger operator -aΔ +V is indefinite. The nonlinearity considered here satisfies the Ambrosetti-Rabinowitz type condition g(t)t≥μ G(t)>0 with μ>3. We obtain the existence of nontrivial solutions for this problem via Morse theory.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一类具有一般非线性g和强制变号势V的R3中的薛定谔-基尔霍夫方程,使得薛定谔算子-aΔ +V是不定的。本文所考虑的非线性满足Ambrosetti-Rabinowitz型条件g(t)t≥μ g(t) >0,其中μ>3。利用莫尔斯理论,得到了该问题非平凡解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of nontrivial solutions for Schrodinger-Kirchhoff equations with indefinite potentials
We consider a class of Schrodinger-Kirchhoff equations in R3 with a general nonlinearity g and coercive sign-changing potential V so that the Schrodinger operator -aΔ +V is indefinite. The nonlinearity considered here satisfies the Ambrosetti-Rabinowitz type condition g(t)t≥μ G(t)>0 with μ>3. We obtain the existence of nontrivial solutions for this problem via Morse theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信