{"title":"日本Kofu和Tanzawa花岗质岩石中锆石的微量元素组成:母岩浆中沉积物的定量指标","authors":"Yusuke Sawaki, Hisashi Asanuma, Shuhei Sakata, Mariko Abe, Takeshi Ohno","doi":"10.1111/iar.12455","DOIUrl":null,"url":null,"abstract":"<p>Zircon is one of the most important minerals in geochronologic research. Isotopic ratios and trace elements in zircons are expected to reflect those of their parent magmas. Many geochemical researchers have proposed various discrimination diagrams for zircon to indicate tectonic setting and to identify source rock. Because most detrital zircons accumulated at river mouths are derived primarily from granitoids, the classification of zircon within granitoids is potentially meaningful. In our research, we focused on sediment involvement during granitoid formation and tried to identify trace-element compositions in zircon that are sensitive to variation in sediment incorporation. To accomplish this, we examined trace-element compositions of both the granitoids and the included zircons in the Kofu granitic complex and the Tanzawa tonalitic plutons in Japan. Among the high-field-strength elements (Th, U, Ta, Nb, Hf, and rare earth elements), only Nb and Ta concentrations in the granitoids increased as the rate of sediment contribution increased. However, the zircon did not show such trends in Nb and Ta content. Zircon Y and P contents exhibited a positive correlation, indicating that xenotime substitution occurs to some extent. Because P exists as pentavalent ions in igneous systems, its presence likely affects the concentrations of pentads in zircon. When we divided the Nb and Ta contents by the P content, it became clear that zircon Nb/P and Ta/P ratios increase depending on sediment involvement. While some exceptions exist, we found that zircon Yb/Gd ratios also respond to sediment involvement. Our data further demonstrated that zircons in granitoids with significant sediment incorporation are characterized by low Ce/P contents, which is partly attributable to monazite crystallization before zircon saturation. This study demonstrates that combining these element ratios is useful for indicating sediment incorporation.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trace-element composition of zircon in Kofu and Tanzawa granitoids, Japan: Quantitative indicator of sediment incorporated in parent magma\",\"authors\":\"Yusuke Sawaki, Hisashi Asanuma, Shuhei Sakata, Mariko Abe, Takeshi Ohno\",\"doi\":\"10.1111/iar.12455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zircon is one of the most important minerals in geochronologic research. Isotopic ratios and trace elements in zircons are expected to reflect those of their parent magmas. Many geochemical researchers have proposed various discrimination diagrams for zircon to indicate tectonic setting and to identify source rock. Because most detrital zircons accumulated at river mouths are derived primarily from granitoids, the classification of zircon within granitoids is potentially meaningful. In our research, we focused on sediment involvement during granitoid formation and tried to identify trace-element compositions in zircon that are sensitive to variation in sediment incorporation. To accomplish this, we examined trace-element compositions of both the granitoids and the included zircons in the Kofu granitic complex and the Tanzawa tonalitic plutons in Japan. Among the high-field-strength elements (Th, U, Ta, Nb, Hf, and rare earth elements), only Nb and Ta concentrations in the granitoids increased as the rate of sediment contribution increased. However, the zircon did not show such trends in Nb and Ta content. Zircon Y and P contents exhibited a positive correlation, indicating that xenotime substitution occurs to some extent. Because P exists as pentavalent ions in igneous systems, its presence likely affects the concentrations of pentads in zircon. When we divided the Nb and Ta contents by the P content, it became clear that zircon Nb/P and Ta/P ratios increase depending on sediment involvement. While some exceptions exist, we found that zircon Yb/Gd ratios also respond to sediment involvement. Our data further demonstrated that zircons in granitoids with significant sediment incorporation are characterized by low Ce/P contents, which is partly attributable to monazite crystallization before zircon saturation. This study demonstrates that combining these element ratios is useful for indicating sediment incorporation.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12455\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12455","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Trace-element composition of zircon in Kofu and Tanzawa granitoids, Japan: Quantitative indicator of sediment incorporated in parent magma
Zircon is one of the most important minerals in geochronologic research. Isotopic ratios and trace elements in zircons are expected to reflect those of their parent magmas. Many geochemical researchers have proposed various discrimination diagrams for zircon to indicate tectonic setting and to identify source rock. Because most detrital zircons accumulated at river mouths are derived primarily from granitoids, the classification of zircon within granitoids is potentially meaningful. In our research, we focused on sediment involvement during granitoid formation and tried to identify trace-element compositions in zircon that are sensitive to variation in sediment incorporation. To accomplish this, we examined trace-element compositions of both the granitoids and the included zircons in the Kofu granitic complex and the Tanzawa tonalitic plutons in Japan. Among the high-field-strength elements (Th, U, Ta, Nb, Hf, and rare earth elements), only Nb and Ta concentrations in the granitoids increased as the rate of sediment contribution increased. However, the zircon did not show such trends in Nb and Ta content. Zircon Y and P contents exhibited a positive correlation, indicating that xenotime substitution occurs to some extent. Because P exists as pentavalent ions in igneous systems, its presence likely affects the concentrations of pentads in zircon. When we divided the Nb and Ta contents by the P content, it became clear that zircon Nb/P and Ta/P ratios increase depending on sediment involvement. While some exceptions exist, we found that zircon Yb/Gd ratios also respond to sediment involvement. Our data further demonstrated that zircons in granitoids with significant sediment incorporation are characterized by low Ce/P contents, which is partly attributable to monazite crystallization before zircon saturation. This study demonstrates that combining these element ratios is useful for indicating sediment incorporation.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.