群上不变积分理论的沿袭

Q4 Mathematics
T. Hirai
{"title":"群上不变积分理论的沿袭","authors":"T. Hirai","doi":"10.7546/giq-24-2022-1-37","DOIUrl":null,"url":null,"abstract":"From the standpoint of the History of Mathematics, beginning with pioneering work of Hurwitz on invariant integrals (or invariant measures) on Lie groups, we pick up epoch-making works successively and draw the main stream among so many contributions to the study of invariant integrals on groups, due to Hurwitz, Schur, Weyl, Haar, Neumann, Kakutani, Weil, and Kakutani-Kodaira, and explain their contents and give the relationships among them.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lineage of the Theory of Invariant Integrals on Groups\",\"authors\":\"T. Hirai\",\"doi\":\"10.7546/giq-24-2022-1-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the standpoint of the History of Mathematics, beginning with pioneering work of Hurwitz on invariant integrals (or invariant measures) on Lie groups, we pick up epoch-making works successively and draw the main stream among so many contributions to the study of invariant integrals on groups, due to Hurwitz, Schur, Weyl, Haar, Neumann, Kakutani, Weil, and Kakutani-Kodaira, and explain their contents and give the relationships among them.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-24-2022-1-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-24-2022-1-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

从数学史的角度出发,从赫尔维茨关于李群上不变积分(或不变测度)的开创性工作开始,依次整理出具有划时代意义的著作,在赫尔维茨、舒尔、魏尔、哈尔、诺伊曼、Kakutani、Weil、Kakutani- kodaira等人对群上不变积分研究的众多贡献中,归纳出其中的主流,并解释了它们的内容,给出了它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lineage of the Theory of Invariant Integrals on Groups
From the standpoint of the History of Mathematics, beginning with pioneering work of Hurwitz on invariant integrals (or invariant measures) on Lie groups, we pick up epoch-making works successively and draw the main stream among so many contributions to the study of invariant integrals on groups, due to Hurwitz, Schur, Weyl, Haar, Neumann, Kakutani, Weil, and Kakutani-Kodaira, and explain their contents and give the relationships among them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信