{"title":"基于尺度变换和遮挡检测STC改进算法的仿生双目无人机检测系统设计","authors":"Huajun Song, Yanqi Wu, Guangbing Zhou","doi":"10.1177/17568293211004846","DOIUrl":null,"url":null,"abstract":"With the rapid development of drones, many problems have arisen, such as invasion of privacy and endangering security. Inspired by biology, in order to achieve effective detection and robust tracking of small targets such as unmanned aerial vehicles, a binocular vision detection system is designed. The system is composed of long focus and wide-angle dual cameras, servo pan tilt, and dual processors for detecting and identifying targets. In view of the shortcomings of spatio-temporal context target tracking algorithm that cannot adapt to scale transformation and easy to track failure in complex scenes, the scale filter and loss criterion are introduced to make an improvement. Qualitative and quantitative experiments show that the designed system can adapt to the scale changes and partial occlusion conditions in the detection, and meets the real-time requirements. The hardware system and algorithm both have reference value for the application of anti-unmanned aerial vehicle systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/17568293211004846","citationCount":"3","resultStr":"{\"title\":\"Design of bio-inspired binocular UAV detection system based on improved STC algorithm of scale transformation and occlusion detection\",\"authors\":\"Huajun Song, Yanqi Wu, Guangbing Zhou\",\"doi\":\"10.1177/17568293211004846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of drones, many problems have arisen, such as invasion of privacy and endangering security. Inspired by biology, in order to achieve effective detection and robust tracking of small targets such as unmanned aerial vehicles, a binocular vision detection system is designed. The system is composed of long focus and wide-angle dual cameras, servo pan tilt, and dual processors for detecting and identifying targets. In view of the shortcomings of spatio-temporal context target tracking algorithm that cannot adapt to scale transformation and easy to track failure in complex scenes, the scale filter and loss criterion are introduced to make an improvement. Qualitative and quantitative experiments show that the designed system can adapt to the scale changes and partial occlusion conditions in the detection, and meets the real-time requirements. The hardware system and algorithm both have reference value for the application of anti-unmanned aerial vehicle systems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/17568293211004846\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293211004846\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293211004846","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of bio-inspired binocular UAV detection system based on improved STC algorithm of scale transformation and occlusion detection
With the rapid development of drones, many problems have arisen, such as invasion of privacy and endangering security. Inspired by biology, in order to achieve effective detection and robust tracking of small targets such as unmanned aerial vehicles, a binocular vision detection system is designed. The system is composed of long focus and wide-angle dual cameras, servo pan tilt, and dual processors for detecting and identifying targets. In view of the shortcomings of spatio-temporal context target tracking algorithm that cannot adapt to scale transformation and easy to track failure in complex scenes, the scale filter and loss criterion are introduced to make an improvement. Qualitative and quantitative experiments show that the designed system can adapt to the scale changes and partial occlusion conditions in the detection, and meets the real-time requirements. The hardware system and algorithm both have reference value for the application of anti-unmanned aerial vehicle systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.