区域供热系统换热管的应力腐蚀开裂

IF 0.8 Q4 ELECTROCHEMISTRY
Sang-Won Cho, Seon-Hong Kim, W. Kim, Jung-Gu Kim
{"title":"区域供热系统换热管的应力腐蚀开裂","authors":"Sang-Won Cho, Seon-Hong Kim, W. Kim, Jung-Gu Kim","doi":"10.14773/CST.2019.18.2.49","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.","PeriodicalId":43201,"journal":{"name":"Corrosion Science and Technology-Korea","volume":"18 1","pages":"49-54"},"PeriodicalIF":0.8000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System\",\"authors\":\"Sang-Won Cho, Seon-Hong Kim, W. Kim, Jung-Gu Kim\",\"doi\":\"10.14773/CST.2019.18.2.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.\",\"PeriodicalId\":43201,\"journal\":{\"name\":\"Corrosion Science and Technology-Korea\",\"volume\":\"18 1\",\"pages\":\"49-54\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science and Technology-Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14773/CST.2019.18.2.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science and Technology-Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14773/CST.2019.18.2.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是对区域供热系统中换热器管的失效进行分析。换热管材料采用SS304不锈钢。换热器在含有少量氯离子的软水环境中运行,定期重复运行和静止期。这导致氯离子的浓度在管的外表面,以及重复的热膨胀,和管的收缩。细观观察发现,裂纹表现为穿晶扩展和枝状扩展,在裂纹的起始点处存在许多凹坑。能谱分析显示Fe、O峰,Cl峰,说明裂纹受到Cl离子的影响。热应力、高温和氯离子局部富集引起的氯致应力腐蚀开裂是导致钢管失效的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System
The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信