标量曲率和无限维hyperkähler化简

IF 0.5 4区 数学 Q3 MATHEMATICS
C. Scarpa, J. Stoppa
{"title":"标量曲率和无限维hyperkähler化简","authors":"C. Scarpa, J. Stoppa","doi":"10.4310/AJM.2020.V24.N4.A7","DOIUrl":null,"url":null,"abstract":"We discuss a natural extension of the K\\\"ahler reduction of Fujiki and Donaldson, which realises the scalar curvature of K\\\"ahler metrics as a moment map, to a hyperk\\\"ahler reduction. Our approach is based on an explicit construction of hyperk\\\"ahler metrics due to Biquard and Gauduchon. This extension is reminiscent of how one derives Hitchin's equations for harmonic bundles, and yields real and complex moment map equations which deform the constant scalar curvature K\\\"ahler (cscK) condition. In the special case of complex curves we recover previous results of Donaldson. We focus on the case of complex surfaces. In particular we show the existence of solutions to the moment map equations on a class of ruled surfaces which do not admit cscK metrics.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Scalar curvature and an infinite-dimensional hyperkähler reduction\",\"authors\":\"C. Scarpa, J. Stoppa\",\"doi\":\"10.4310/AJM.2020.V24.N4.A7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a natural extension of the K\\\\\\\"ahler reduction of Fujiki and Donaldson, which realises the scalar curvature of K\\\\\\\"ahler metrics as a moment map, to a hyperk\\\\\\\"ahler reduction. Our approach is based on an explicit construction of hyperk\\\\\\\"ahler metrics due to Biquard and Gauduchon. This extension is reminiscent of how one derives Hitchin's equations for harmonic bundles, and yields real and complex moment map equations which deform the constant scalar curvature K\\\\\\\"ahler (cscK) condition. In the special case of complex curves we recover previous results of Donaldson. We focus on the case of complex surfaces. In particular we show the existence of solutions to the moment map equations on a class of ruled surfaces which do not admit cscK metrics.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/AJM.2020.V24.N4.A7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2020.V24.N4.A7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们讨论了Fujiki和Donaldson的K\ ahler约简的自然推广,它将K\ ahler度量的标量曲率作为一个矩映射实现为超K\ ahler约简。我们的方法是基于Biquard和Gauduchon的hyperk\ ahler度量的显式构造。这个扩展让人联想到如何推导出谐波束的希钦方程,并产生变形常数曲率K\ \ ahler (cscK)条件的实数和复矩映射方程。在复杂曲线的特殊情况下,我们恢复了Donaldson先前的结果。我们关注的是复杂曲面的情况。特别地,我们证明了一类不允许cscK度量的直纹曲面上矩映射方程解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalar curvature and an infinite-dimensional hyperkähler reduction
We discuss a natural extension of the K\"ahler reduction of Fujiki and Donaldson, which realises the scalar curvature of K\"ahler metrics as a moment map, to a hyperk\"ahler reduction. Our approach is based on an explicit construction of hyperk\"ahler metrics due to Biquard and Gauduchon. This extension is reminiscent of how one derives Hitchin's equations for harmonic bundles, and yields real and complex moment map equations which deform the constant scalar curvature K\"ahler (cscK) condition. In the special case of complex curves we recover previous results of Donaldson. We focus on the case of complex surfaces. In particular we show the existence of solutions to the moment map equations on a class of ruled surfaces which do not admit cscK metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信