关于k阶对称矩阵上可交换加性映射的注释

IF 0.7 4区 数学 Q2 Mathematics
W. L. Chooi, Yean Nee Tan
{"title":"关于k阶对称矩阵上可交换加性映射的注释","authors":"W. L. Chooi, Yean Nee Tan","doi":"10.13001/ela.2021.6349","DOIUrl":null,"url":null,"abstract":"Let $n\\geq 2$ and $1<k\\leq n$ be integers. Let $S_n(\\mathbb{F})$ be the linear space of $n\\times n$ symmetric matrices over a field $\\mathbb{F}$ of characteristic not two. In this note, we prove that an additive map $\\psi:S_n(\\mathbb{F})\\rightarrow S_n(\\mathbb{F})$ satisfies $\\psi(A)A=A\\psi(A)$ for all rank $k$ matrices $A\\in S_n(\\mathbb{F})$ if and only if there exists a scalar $\\lambda\\in \\mathbb{F}$ and an additive map $\\mu:S_n(\\mathbb{F})\\rightarrow \\mathbb{F}$ such that\\[\\psi(A)=\\lambda A+\\mu(A)I_n,\\]for all $A\\in S_n(\\mathbb{F})$, where $I_n$ is the identity matrix. Examples showing the indispensability of assumptions on the integer $k>1$ and the underlying field $\\mathbb{F}$ of characteristic not two are included.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on commuting additive maps on rank k symmetric matrices\",\"authors\":\"W. L. Chooi, Yean Nee Tan\",\"doi\":\"10.13001/ela.2021.6349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $n\\\\geq 2$ and $1<k\\\\leq n$ be integers. Let $S_n(\\\\mathbb{F})$ be the linear space of $n\\\\times n$ symmetric matrices over a field $\\\\mathbb{F}$ of characteristic not two. In this note, we prove that an additive map $\\\\psi:S_n(\\\\mathbb{F})\\\\rightarrow S_n(\\\\mathbb{F})$ satisfies $\\\\psi(A)A=A\\\\psi(A)$ for all rank $k$ matrices $A\\\\in S_n(\\\\mathbb{F})$ if and only if there exists a scalar $\\\\lambda\\\\in \\\\mathbb{F}$ and an additive map $\\\\mu:S_n(\\\\mathbb{F})\\\\rightarrow \\\\mathbb{F}$ such that\\\\[\\\\psi(A)=\\\\lambda A+\\\\mu(A)I_n,\\\\]for all $A\\\\in S_n(\\\\mathbb{F})$, where $I_n$ is the identity matrix. Examples showing the indispensability of assumptions on the integer $k>1$ and the underlying field $\\\\mathbb{F}$ of characteristic not two are included.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2021.6349\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.6349","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设包含特征不二的$n\geq 2$和$11$以及底层字段$\mathbb{F}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on commuting additive maps on rank k symmetric matrices
Let $n\geq 2$ and $11$ and the underlying field $\mathbb{F}$ of characteristic not two are included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信