{"title":"基于超球面多项式零点的(0,1,0)插值分析","authors":"Y. Singh, R. Srivastava","doi":"10.31926/but.mif.2019.12.61.1.8","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to construct an interpolatory polynomial (0,1;0) with special types of boundary conditions. Here the nodes {xi}i=1 and {xi } n−1 i=1 are the roots of P (k) n (x) and P (k+1) n−1 (x) respectively, where P (k) n (x) is the Ultraspherical polynomial of degree n. In this paper, we prove, existence, explicit representation and order of convergence of the interpolatory polynomial. 2000 Mathematics Subject Classification: 41A10, 97N50.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An analysis of (0,1;0) interpolation based on the zeros of ultraspherical polynomials\",\"authors\":\"Y. Singh, R. Srivastava\",\"doi\":\"10.31926/but.mif.2019.12.61.1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to construct an interpolatory polynomial (0,1;0) with special types of boundary conditions. Here the nodes {xi}i=1 and {xi } n−1 i=1 are the roots of P (k) n (x) and P (k+1) n−1 (x) respectively, where P (k) n (x) is the Ultraspherical polynomial of degree n. In this paper, we prove, existence, explicit representation and order of convergence of the interpolatory polynomial. 2000 Mathematics Subject Classification: 41A10, 97N50.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2019.12.61.1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2019.12.61.1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
An analysis of (0,1;0) interpolation based on the zeros of ultraspherical polynomials
The aim of this paper is to construct an interpolatory polynomial (0,1;0) with special types of boundary conditions. Here the nodes {xi}i=1 and {xi } n−1 i=1 are the roots of P (k) n (x) and P (k+1) n−1 (x) respectively, where P (k) n (x) is the Ultraspherical polynomial of degree n. In this paper, we prove, existence, explicit representation and order of convergence of the interpolatory polynomial. 2000 Mathematics Subject Classification: 41A10, 97N50.