基于超球面多项式零点的(0,1,0)插值分析

Q4 Mathematics
Y. Singh, R. Srivastava
{"title":"基于超球面多项式零点的(0,1,0)插值分析","authors":"Y. Singh, R. Srivastava","doi":"10.31926/but.mif.2019.12.61.1.8","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to construct an interpolatory polynomial (0,1;0) with special types of boundary conditions. Here the nodes {xi}i=1 and {xi } n−1 i=1 are the roots of P (k) n (x) and P (k+1) n−1 (x) respectively, where P (k) n (x) is the Ultraspherical polynomial of degree n. In this paper, we prove, existence, explicit representation and order of convergence of the interpolatory polynomial. 2000 Mathematics Subject Classification: 41A10, 97N50.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An analysis of (0,1;0) interpolation based on the zeros of ultraspherical polynomials\",\"authors\":\"Y. Singh, R. Srivastava\",\"doi\":\"10.31926/but.mif.2019.12.61.1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to construct an interpolatory polynomial (0,1;0) with special types of boundary conditions. Here the nodes {xi}i=1 and {xi } n−1 i=1 are the roots of P (k) n (x) and P (k+1) n−1 (x) respectively, where P (k) n (x) is the Ultraspherical polynomial of degree n. In this paper, we prove, existence, explicit representation and order of convergence of the interpolatory polynomial. 2000 Mathematics Subject Classification: 41A10, 97N50.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2019.12.61.1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2019.12.61.1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是构造一个具有特殊类型边界条件的插值多项式(0,1;0)。这里是节点{xi}i=1和{xi}n−1 i=1分别是P(k)n(x)和P(k+1)n−1(x)的根,其中P(k。2000年数学学科分类:41A1097N50。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of (0,1;0) interpolation based on the zeros of ultraspherical polynomials
The aim of this paper is to construct an interpolatory polynomial (0,1;0) with special types of boundary conditions. Here the nodes {xi}i=1 and {xi } n−1 i=1 are the roots of P (k) n (x) and P (k+1) n−1 (x) respectively, where P (k) n (x) is the Ultraspherical polynomial of degree n. In this paper, we prove, existence, explicit representation and order of convergence of the interpolatory polynomial. 2000 Mathematics Subject Classification: 41A10, 97N50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信