{"title":"Pseudo-BCH Semilattices","authors":"A. Walendziak","doi":"10.18778/0138-0680.47.2.04","DOIUrl":null,"url":null,"abstract":"In this paper we study pseudo-BCH algebras which are semilattices or lattices with respect to the natural relations ≤; we call them pseudo-BCH join-semilattices, pseudo-BCH meet-semilattices and pseudo-BCH lattices, respectively. We prove that the class of all pseudo-BCH join-semilattices is a variety and show that it is weakly regular, arithmetical at 1, and congruence distributive. In addition, we obtain the systems of identities defininig pseudo-BCH meet-semilattices and pseudo-BCH lattices.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-BCH Semilattices\",\"authors\":\"A. Walendziak\",\"doi\":\"10.18778/0138-0680.47.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study pseudo-BCH algebras which are semilattices or lattices with respect to the natural relations ≤; we call them pseudo-BCH join-semilattices, pseudo-BCH meet-semilattices and pseudo-BCH lattices, respectively. We prove that the class of all pseudo-BCH join-semilattices is a variety and show that it is weakly regular, arithmetical at 1, and congruence distributive. In addition, we obtain the systems of identities defininig pseudo-BCH meet-semilattices and pseudo-BCH lattices.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.47.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.47.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
In this paper we study pseudo-BCH algebras which are semilattices or lattices with respect to the natural relations ≤; we call them pseudo-BCH join-semilattices, pseudo-BCH meet-semilattices and pseudo-BCH lattices, respectively. We prove that the class of all pseudo-BCH join-semilattices is a variety and show that it is weakly regular, arithmetical at 1, and congruence distributive. In addition, we obtain the systems of identities defininig pseudo-BCH meet-semilattices and pseudo-BCH lattices.