banach函数空间中拉盖尔函数的密度

IF 0.3 Q4 MATHEMATICS
C. Fernandes, Oleksiy Karlovych, M. A. Valente
{"title":"banach函数空间中拉盖尔函数的密度","authors":"C. Fernandes, Oleksiy Karlovych, M. A. Valente","doi":"10.54379/jiasf-2022-2-4","DOIUrl":null,"url":null,"abstract":"Let λ > 0 and Φλ := {ϕ1,λ, ϕ2,λ, . . . } be the system of dilated Laguerre functions. We show that if L1 (R+) ∩ L∞(R+) is embedded into a separable Banach function space X(R+), then the linear span of Φλ is dense in X(R+). This implies that the linear span of Φλ is dense in every separable rearrangement-invariant space X(R+) and in every separable variable Lebesgue space Lp(·) (R+)","PeriodicalId":43883,"journal":{"name":"Journal of Inequalities and Special Functions","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE DENSITY OF LAGUERRE FUNCTIONS IN SOME BANACH FUNCTION SPACES\",\"authors\":\"C. Fernandes, Oleksiy Karlovych, M. A. Valente\",\"doi\":\"10.54379/jiasf-2022-2-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let λ > 0 and Φλ := {ϕ1,λ, ϕ2,λ, . . . } be the system of dilated Laguerre functions. We show that if L1 (R+) ∩ L∞(R+) is embedded into a separable Banach function space X(R+), then the linear span of Φλ is dense in X(R+). This implies that the linear span of Φλ is dense in every separable rearrangement-invariant space X(R+) and in every separable variable Lebesgue space Lp(·) (R+)\",\"PeriodicalId\":43883,\"journal\":{\"name\":\"Journal of Inequalities and Special Functions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Special Functions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54379/jiasf-2022-2-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Special Functions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54379/jiasf-2022-2-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设λ > 0和Φλ:= {ϕ1,λ, ϕ2,λ,…是膨胀拉盖尔函数的系统。我们证明了如果L1 (R+)∩L∞(R+)嵌入到可分离的Banach函数空间X(R+)中,那么Φλ的线性张成空间在X(R+)中是密集的。这表明Φλ的线性张成空间在每一个可分重排不变空间X(R+)和每一个可分变量勒贝格空间Lp(·)(R+)中是密集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE DENSITY OF LAGUERRE FUNCTIONS IN SOME BANACH FUNCTION SPACES
Let λ > 0 and Φλ := {ϕ1,λ, ϕ2,λ, . . . } be the system of dilated Laguerre functions. We show that if L1 (R+) ∩ L∞(R+) is embedded into a separable Banach function space X(R+), then the linear span of Φλ is dense in X(R+). This implies that the linear span of Φλ is dense in every separable rearrangement-invariant space X(R+) and in every separable variable Lebesgue space Lp(·) (R+)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信