Annika Bach, M. Cicalese, Leonard Kreutz, G. Orlando
{"title":"三角晶格上的反铁磁xy模型:拓扑奇点","authors":"Annika Bach, M. Cicalese, Leonard Kreutz, G. Orlando","doi":"10.1512/iumj.2022.71.9239","DOIUrl":null,"url":null,"abstract":"We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the $\\Gamma$-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The antiferromagnetic xy model on the triangular lattice: topological singularities\",\"authors\":\"Annika Bach, M. Cicalese, Leonard Kreutz, G. Orlando\",\"doi\":\"10.1512/iumj.2022.71.9239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the $\\\\Gamma$-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2022.71.9239\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9239","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The antiferromagnetic xy model on the triangular lattice: topological singularities
We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the $\Gamma$-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.