三角晶格上的反铁磁xy模型:拓扑奇点

IF 1.2 2区 数学 Q1 MATHEMATICS
Annika Bach, M. Cicalese, Leonard Kreutz, G. Orlando
{"title":"三角晶格上的反铁磁xy模型:拓扑奇点","authors":"Annika Bach, M. Cicalese, Leonard Kreutz, G. Orlando","doi":"10.1512/iumj.2022.71.9239","DOIUrl":null,"url":null,"abstract":"We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the $\\Gamma$-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The antiferromagnetic xy model on the triangular lattice: topological singularities\",\"authors\":\"Annika Bach, M. Cicalese, Leonard Kreutz, G. Orlando\",\"doi\":\"10.1512/iumj.2022.71.9239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the $\\\\Gamma$-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2022.71.9239\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9239","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们研究了二维三角形晶格上反铁磁XY模型在涡旋区的离散到连续变分极限。在这种情况下,自旋系统无法克服手性跃迁的能量屏障,因此两个手性相中的一个是普遍存在的。我们找到了描述多数手性相中自旋场涡旋结构的阶参数,并明确计算了标度能量的$\Gamma$-极限,表明它集中在自旋场的有限多个类涡旋奇点上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The antiferromagnetic xy model on the triangular lattice: topological singularities
We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the $\Gamma$-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信