{"title":"点曲线模的导出范畴。我","authors":"Ana-Maria Castravet, J. Tevelev","doi":"10.14231/AG-2020-026","DOIUrl":null,"url":null,"abstract":"This is the first paper in the sequence devoted to derived category of moduli spaces of curves of genus $0$ with marked points. We develop several approaches to describe it equivariantly with respect to the action of the symmetric group permuting marked points. We construct an equivariant full exceptional collection on the Losev-Manin space which categorifies derangements.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Derived category of moduli of pointed curves. I\",\"authors\":\"Ana-Maria Castravet, J. Tevelev\",\"doi\":\"10.14231/AG-2020-026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the first paper in the sequence devoted to derived category of moduli spaces of curves of genus $0$ with marked points. We develop several approaches to describe it equivariantly with respect to the action of the symmetric group permuting marked points. We construct an equivariant full exceptional collection on the Losev-Manin space which categorifies derangements.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2020-026\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2020-026","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
This is the first paper in the sequence devoted to derived category of moduli spaces of curves of genus $0$ with marked points. We develop several approaches to describe it equivariantly with respect to the action of the symmetric group permuting marked points. We construct an equivariant full exceptional collection on the Losev-Manin space which categorifies derangements.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.