{"title":"因子为三角形的有向图的上升子图分解","authors":"Andrea D. Austin, Brian C. Wagner","doi":"10.7151/dmgt.2306","DOIUrl":null,"url":null,"abstract":"Abstract In 1987, Alavi, Boals, Chartrand, Erdős, and Oellermann conjectured that all graphs have an ascending subgraph decomposition (ASD). In a previous paper, Wagner showed that all oriented complete balanced tripartite graphs have an ASD. In this paper, we will show that all orientations of an oriented graph that can be factored into triangles with a large portion of the triangles being transitive have an ASD. We will also use the result to obtain an ASD for any orientation of complete multipartite graphs with 3n partite classes each containing 2 vertices (a K(2 : 3n)) or 4 vertices (a K(4 : 3n)).","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"42 1","pages":"811 - 822"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ascending Subgraph Decompositions of Oriented Graphs that Factor into Triangles\",\"authors\":\"Andrea D. Austin, Brian C. Wagner\",\"doi\":\"10.7151/dmgt.2306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In 1987, Alavi, Boals, Chartrand, Erdős, and Oellermann conjectured that all graphs have an ascending subgraph decomposition (ASD). In a previous paper, Wagner showed that all oriented complete balanced tripartite graphs have an ASD. In this paper, we will show that all orientations of an oriented graph that can be factored into triangles with a large portion of the triangles being transitive have an ASD. We will also use the result to obtain an ASD for any orientation of complete multipartite graphs with 3n partite classes each containing 2 vertices (a K(2 : 3n)) or 4 vertices (a K(4 : 3n)).\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"42 1\",\"pages\":\"811 - 822\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2306\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2306","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ascending Subgraph Decompositions of Oriented Graphs that Factor into Triangles
Abstract In 1987, Alavi, Boals, Chartrand, Erdős, and Oellermann conjectured that all graphs have an ascending subgraph decomposition (ASD). In a previous paper, Wagner showed that all oriented complete balanced tripartite graphs have an ASD. In this paper, we will show that all orientations of an oriented graph that can be factored into triangles with a large portion of the triangles being transitive have an ASD. We will also use the result to obtain an ASD for any orientation of complete multipartite graphs with 3n partite classes each containing 2 vertices (a K(2 : 3n)) or 4 vertices (a K(4 : 3n)).
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.