Yonghong Zhong, Kai Fukami, Byungjin An, Kunihiko Taira
{"title":"基于机器学习的涡碰翼型尾迹稀疏传感器重建","authors":"Yonghong Zhong, Kai Fukami, Byungjin An, Kunihiko Taira","doi":"10.1007/s00162-023-00657-y","DOIUrl":null,"url":null,"abstract":"<p>Reconstruction of unsteady vortical flow fields from limited sensor measurements is challenging. We develop machine learning methods to reconstruct flow features from sparse sensor measurements during transient vortex–airfoil wake interaction using only a limited amount of training data. The present machine learning models accurately reconstruct the aerodynamic force coefficients, pressure distributions over airfoil surface, and two-dimensional vorticity field for a variety of untrained cases. Multi-layer perceptron is used for estimating aerodynamic forces and pressure profiles over the surface, establishing a nonlinear model between the pressure sensor measurements and the output variables. A combination of multi-layer perceptron with convolutional neural network is utilized to reconstruct the vortical wake. Furthermore, the use of transfer learning and long short-term memory algorithm combined in the training models greatly improves the reconstruction of transient wakes by embedding the dynamics. The present machine-learning methods are able to estimate the transient flow features while exhibiting robustness against noisy sensor measurements. Finally, appropriate sensor locations over different time periods are assessed for accurately estimating the wakes. The present study offers insights into the dynamics of vortex–airfoil interaction and the development of data-driven flow estimation.\n</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 2","pages":"269 - 287"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-023-00657-y.pdf","citationCount":"7","resultStr":"{\"title\":\"Sparse sensor reconstruction of vortex-impinged airfoil wake with machine learning\",\"authors\":\"Yonghong Zhong, Kai Fukami, Byungjin An, Kunihiko Taira\",\"doi\":\"10.1007/s00162-023-00657-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconstruction of unsteady vortical flow fields from limited sensor measurements is challenging. We develop machine learning methods to reconstruct flow features from sparse sensor measurements during transient vortex–airfoil wake interaction using only a limited amount of training data. The present machine learning models accurately reconstruct the aerodynamic force coefficients, pressure distributions over airfoil surface, and two-dimensional vorticity field for a variety of untrained cases. Multi-layer perceptron is used for estimating aerodynamic forces and pressure profiles over the surface, establishing a nonlinear model between the pressure sensor measurements and the output variables. A combination of multi-layer perceptron with convolutional neural network is utilized to reconstruct the vortical wake. Furthermore, the use of transfer learning and long short-term memory algorithm combined in the training models greatly improves the reconstruction of transient wakes by embedding the dynamics. The present machine-learning methods are able to estimate the transient flow features while exhibiting robustness against noisy sensor measurements. Finally, appropriate sensor locations over different time periods are assessed for accurately estimating the wakes. The present study offers insights into the dynamics of vortex–airfoil interaction and the development of data-driven flow estimation.\\n</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"37 2\",\"pages\":\"269 - 287\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00162-023-00657-y.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-023-00657-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00657-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Sparse sensor reconstruction of vortex-impinged airfoil wake with machine learning
Reconstruction of unsteady vortical flow fields from limited sensor measurements is challenging. We develop machine learning methods to reconstruct flow features from sparse sensor measurements during transient vortex–airfoil wake interaction using only a limited amount of training data. The present machine learning models accurately reconstruct the aerodynamic force coefficients, pressure distributions over airfoil surface, and two-dimensional vorticity field for a variety of untrained cases. Multi-layer perceptron is used for estimating aerodynamic forces and pressure profiles over the surface, establishing a nonlinear model between the pressure sensor measurements and the output variables. A combination of multi-layer perceptron with convolutional neural network is utilized to reconstruct the vortical wake. Furthermore, the use of transfer learning and long short-term memory algorithm combined in the training models greatly improves the reconstruction of transient wakes by embedding the dynamics. The present machine-learning methods are able to estimate the transient flow features while exhibiting robustness against noisy sensor measurements. Finally, appropriate sensor locations over different time periods are assessed for accurately estimating the wakes. The present study offers insights into the dynamics of vortex–airfoil interaction and the development of data-driven flow estimation.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.