一类非线性半正子边值问题正解的存在性

IF 0.5 Q3 MATHEMATICS
Cubo Pub Date : 2022-12-21 DOI:10.56754/0719-0646.2403.0413
S. Panigrahi, Sandip Rout
{"title":"一类非线性半正子边值问题正解的存在性","authors":"S. Panigrahi, Sandip Rout","doi":"10.56754/0719-0646.2403.0413","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the existence of positive solution of the following semipositone boundary value problem on time scales: \\begin{equation*} (\\psi(t)y^\\Delta (t))^\\nabla + \\lambda_1 g(t, \\,y(t)) + \\lambda_2 h(t,\\,y(t)) = 0, \\,t \\in [\\rho(c), \\,\\sigma(d)]_\\mathbb{T}, \\end{equation*} with mixed boundary conditions \\begin{equation*} \\begin{split} \\alpha y(\\rho(c))-\\beta \\psi(\\rho(c)) y^\\Delta(\\rho(c))=0,\\\\ \\gamma y(\\sigma(d))+\\delta \\psi(d) y^\\Delta(d)=0, \\end{split} \\end{equation*} where $\\psi:C[\\rho(c),\\, \\sigma(d)]_\\mathbb{T}$, $\\psi(t)>0$ for all $t \\in [\\rho(c),\\,\\sigma(d)]_\\mathbb{T}$; both $g$ and $h : [\\rho(c),\\,\\sigma(d)]_\\mathbb{T} \\times [0,\\,\\infty) \\to \\mathbb{R}$ are continuous and semipositone. We have established the existence of at least one positive solution or multiple positive solutions of the above boundary value problem by using fixed point theorem on a cone in a Banach space, when $g$ and $h$ are both superlinear or sublinear or one is superlinear and the other is sublinear for $\\lambda_i>0;\\,i=1,\\,2$ are sufficiently small.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale\",\"authors\":\"S. Panigrahi, Sandip Rout\",\"doi\":\"10.56754/0719-0646.2403.0413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the existence of positive solution of the following semipositone boundary value problem on time scales: \\\\begin{equation*} (\\\\psi(t)y^\\\\Delta (t))^\\\\nabla + \\\\lambda_1 g(t, \\\\,y(t)) + \\\\lambda_2 h(t,\\\\,y(t)) = 0, \\\\,t \\\\in [\\\\rho(c), \\\\,\\\\sigma(d)]_\\\\mathbb{T}, \\\\end{equation*} with mixed boundary conditions \\\\begin{equation*} \\\\begin{split} \\\\alpha y(\\\\rho(c))-\\\\beta \\\\psi(\\\\rho(c)) y^\\\\Delta(\\\\rho(c))=0,\\\\\\\\ \\\\gamma y(\\\\sigma(d))+\\\\delta \\\\psi(d) y^\\\\Delta(d)=0, \\\\end{split} \\\\end{equation*} where $\\\\psi:C[\\\\rho(c),\\\\, \\\\sigma(d)]_\\\\mathbb{T}$, $\\\\psi(t)>0$ for all $t \\\\in [\\\\rho(c),\\\\,\\\\sigma(d)]_\\\\mathbb{T}$; both $g$ and $h : [\\\\rho(c),\\\\,\\\\sigma(d)]_\\\\mathbb{T} \\\\times [0,\\\\,\\\\infty) \\\\to \\\\mathbb{R}$ are continuous and semipositone. We have established the existence of at least one positive solution or multiple positive solutions of the above boundary value problem by using fixed point theorem on a cone in a Banach space, when $g$ and $h$ are both superlinear or sublinear or one is superlinear and the other is sublinear for $\\\\lambda_i>0;\\\\,i=1,\\\\,2$ are sufficiently small.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2403.0413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2403.0413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注以下半正数边值问题在时间尺度上的正解的存在性:\begin{equation*} (\psi(t)y^\Delta (t))^\nabla + \lambda_1 g(t, \,y(t)) + \lambda_2 h(t,\,y(t)) = 0, \,t \in [\rho(c), \,\sigma(d)]_\mathbb{T}, \end{equation*}具有混合边界条件\begin{equation*} \begin{split} \alpha y(\rho(c))-\beta \psi(\rho(c)) y^\Delta(\rho(c))=0,\\ \gamma y(\sigma(d))+\delta \psi(d) y^\Delta(d)=0, \end{split} \end{equation*},其中$\psi:C[\rho(c),\, \sigma(d)]_\mathbb{T}$, $\psi(t)>0$对于所有$t \in [\rho(c),\,\sigma(d)]_\mathbb{T}$;$g$和$h : [\rho(c),\,\sigma(d)]_\mathbb{T} \times [0,\,\infty) \to \mathbb{R}$都是连续的半正电子。在Banach空间中,当$g$和$h$均为超线性或次线性,或当$\lambda_i>0;\,i=1,\,2$足够小时,利用锥上不动点定理,证明了上述边值问题的至少一个正解或多个正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
In this paper, we are concerned with the existence of positive solution of the following semipositone boundary value problem on time scales: \begin{equation*} (\psi(t)y^\Delta (t))^\nabla + \lambda_1 g(t, \,y(t)) + \lambda_2 h(t,\,y(t)) = 0, \,t \in [\rho(c), \,\sigma(d)]_\mathbb{T}, \end{equation*} with mixed boundary conditions \begin{equation*} \begin{split} \alpha y(\rho(c))-\beta \psi(\rho(c)) y^\Delta(\rho(c))=0,\\ \gamma y(\sigma(d))+\delta \psi(d) y^\Delta(d)=0, \end{split} \end{equation*} where $\psi:C[\rho(c),\, \sigma(d)]_\mathbb{T}$, $\psi(t)>0$ for all $t \in [\rho(c),\,\sigma(d)]_\mathbb{T}$; both $g$ and $h : [\rho(c),\,\sigma(d)]_\mathbb{T} \times [0,\,\infty) \to \mathbb{R}$ are continuous and semipositone. We have established the existence of at least one positive solution or multiple positive solutions of the above boundary value problem by using fixed point theorem on a cone in a Banach space, when $g$ and $h$ are both superlinear or sublinear or one is superlinear and the other is sublinear for $\lambda_i>0;\,i=1,\,2$ are sufficiently small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信