Dominika A. Michalek, Suna Onengut-Gumuscu, David R. Repaske, Stephen S. Rich
{"title":"1型糖尿病的精准医疗","authors":"Dominika A. Michalek, Suna Onengut-Gumuscu, David R. Repaske, Stephen S. Rich","doi":"10.1007/s41745-023-00356-x","DOIUrl":null,"url":null,"abstract":"<div><p>Type 1 diabetes is a complex, chronic disease in which the insulin-producing beta cells in the pancreas are sufficiently altered or impaired to result in requirement of exogenous insulin for survival. The development of type 1 diabetes is thought to be an autoimmune process, in which an environmental (unknown) trigger initiates a T cell-mediated immune response in genetically susceptible individuals. The presence of islet autoantibodies in the blood are signs of type 1 diabetes development, and risk of progressing to clinical type 1 diabetes is correlated with the presence of multiple islet autoantibodies. Currently, a “staging” model of type 1 diabetes proposes discrete components consisting of normal blood glucose but at least two islet autoantibodies (Stage 1), abnormal blood glucose with at least two islet autoantibodies (Stage 2), and clinical diagnosis (Stage 3). While these stages may, in fact, not be discrete and vary by individual, the format suggests important applications of precision medicine to diagnosis, prevention, prognosis, treatment and monitoring. In this paper, applications of precision medicine in type 1 diabetes are discussed, with both opportunities and barriers to global implementation highlighted. Several groups have implemented components of precision medicine, yet the integration of the necessary steps to achieve both short- and long-term solutions will need to involve researchers, patients, families, and healthcare providers to fully impact and reduce the burden of type 1 diabetes.</p></div>","PeriodicalId":675,"journal":{"name":"Journal of the Indian Institute of Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41745-023-00356-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Precision Medicine in Type 1 Diabetes\",\"authors\":\"Dominika A. Michalek, Suna Onengut-Gumuscu, David R. Repaske, Stephen S. Rich\",\"doi\":\"10.1007/s41745-023-00356-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Type 1 diabetes is a complex, chronic disease in which the insulin-producing beta cells in the pancreas are sufficiently altered or impaired to result in requirement of exogenous insulin for survival. The development of type 1 diabetes is thought to be an autoimmune process, in which an environmental (unknown) trigger initiates a T cell-mediated immune response in genetically susceptible individuals. The presence of islet autoantibodies in the blood are signs of type 1 diabetes development, and risk of progressing to clinical type 1 diabetes is correlated with the presence of multiple islet autoantibodies. Currently, a “staging” model of type 1 diabetes proposes discrete components consisting of normal blood glucose but at least two islet autoantibodies (Stage 1), abnormal blood glucose with at least two islet autoantibodies (Stage 2), and clinical diagnosis (Stage 3). While these stages may, in fact, not be discrete and vary by individual, the format suggests important applications of precision medicine to diagnosis, prevention, prognosis, treatment and monitoring. In this paper, applications of precision medicine in type 1 diabetes are discussed, with both opportunities and barriers to global implementation highlighted. Several groups have implemented components of precision medicine, yet the integration of the necessary steps to achieve both short- and long-term solutions will need to involve researchers, patients, families, and healthcare providers to fully impact and reduce the burden of type 1 diabetes.</p></div>\",\"PeriodicalId\":675,\"journal\":{\"name\":\"Journal of the Indian Institute of Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41745-023-00356-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Institute of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41745-023-00356-x\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Institute of Science","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s41745-023-00356-x","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Type 1 diabetes is a complex, chronic disease in which the insulin-producing beta cells in the pancreas are sufficiently altered or impaired to result in requirement of exogenous insulin for survival. The development of type 1 diabetes is thought to be an autoimmune process, in which an environmental (unknown) trigger initiates a T cell-mediated immune response in genetically susceptible individuals. The presence of islet autoantibodies in the blood are signs of type 1 diabetes development, and risk of progressing to clinical type 1 diabetes is correlated with the presence of multiple islet autoantibodies. Currently, a “staging” model of type 1 diabetes proposes discrete components consisting of normal blood glucose but at least two islet autoantibodies (Stage 1), abnormal blood glucose with at least two islet autoantibodies (Stage 2), and clinical diagnosis (Stage 3). While these stages may, in fact, not be discrete and vary by individual, the format suggests important applications of precision medicine to diagnosis, prevention, prognosis, treatment and monitoring. In this paper, applications of precision medicine in type 1 diabetes are discussed, with both opportunities and barriers to global implementation highlighted. Several groups have implemented components of precision medicine, yet the integration of the necessary steps to achieve both short- and long-term solutions will need to involve researchers, patients, families, and healthcare providers to fully impact and reduce the burden of type 1 diabetes.
期刊介绍:
Started in 1914 as the second scientific journal to be published from India, the Journal of the Indian Institute of Science became a multidisciplinary reviews journal covering all disciplines of science, engineering and technology in 2007. Since then each issue is devoted to a specific topic of contemporary research interest and guest-edited by eminent researchers. Authors selected by the Guest Editor(s) and/or the Editorial Board are invited to submit their review articles; each issue is expected to serve as a state-of-the-art review of a topic from multiple viewpoints.