气候变化中受冰荷载影响的树木脆性分析曲线

IF 2.7 Q2 ENGINEERING, CIVIL
R. Campos, P. S. Harvey, G. Hou
{"title":"气候变化中受冰荷载影响的树木脆性分析曲线","authors":"R. Campos, P. S. Harvey, G. Hou","doi":"10.1080/23789689.2023.2202962","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recent severe ice storms across the United States severely damaged trees resulting in extensive electrical power outages. Furthermore, trees and branches can fall on nearby roads, blocking traffic flow and reducing the safety of drivers. In this study, trees subjected to ice loads were analyzed using the finite element method and Monte Carlo simulation to develop analytical fragility curves. Two-dimensional, fractal trees were constructed with randomly generated geometric and mechanical parameters for four deciduous tree species: Acer saccharum, Tilia americana, Fagus grandifolia, and Quercus alba. Two load case scenarios were considered – with and without the effects of leaves – which were then subjected to varying ice accumulation thicknesses. The resulting fragility curves suggest that leaves have a substantial impact on tree branch damage under ice loads, which is significant because of the increase in unseasonably early ice storms due to climate change.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical fragility curves for trees subject to ice loading in a changing climate\",\"authors\":\"R. Campos, P. S. Harvey, G. Hou\",\"doi\":\"10.1080/23789689.2023.2202962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Recent severe ice storms across the United States severely damaged trees resulting in extensive electrical power outages. Furthermore, trees and branches can fall on nearby roads, blocking traffic flow and reducing the safety of drivers. In this study, trees subjected to ice loads were analyzed using the finite element method and Monte Carlo simulation to develop analytical fragility curves. Two-dimensional, fractal trees were constructed with randomly generated geometric and mechanical parameters for four deciduous tree species: Acer saccharum, Tilia americana, Fagus grandifolia, and Quercus alba. Two load case scenarios were considered – with and without the effects of leaves – which were then subjected to varying ice accumulation thicknesses. The resulting fragility curves suggest that leaves have a substantial impact on tree branch damage under ice loads, which is significant because of the increase in unseasonably early ice storms due to climate change.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2023.2202962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2023.2202962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical fragility curves for trees subject to ice loading in a changing climate
ABSTRACT Recent severe ice storms across the United States severely damaged trees resulting in extensive electrical power outages. Furthermore, trees and branches can fall on nearby roads, blocking traffic flow and reducing the safety of drivers. In this study, trees subjected to ice loads were analyzed using the finite element method and Monte Carlo simulation to develop analytical fragility curves. Two-dimensional, fractal trees were constructed with randomly generated geometric and mechanical parameters for four deciduous tree species: Acer saccharum, Tilia americana, Fagus grandifolia, and Quercus alba. Two load case scenarios were considered – with and without the effects of leaves – which were then subjected to varying ice accumulation thicknesses. The resulting fragility curves suggest that leaves have a substantial impact on tree branch damage under ice loads, which is significant because of the increase in unseasonably early ice storms due to climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.20%
发文量
34
期刊介绍: Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities. Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信