用改进的数学方法传播Vakhnenko-Parkes动力方程的行波解

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Aly R. Seadawy, Wafaa A. Albarakati, Asghar Ali, Dumitru Baleanu
{"title":"用改进的数学方法传播Vakhnenko-Parkes动力方程的行波解","authors":"Aly R. Seadawy,&nbsp;Wafaa A. Albarakati,&nbsp;Asghar Ali,&nbsp;Dumitru Baleanu","doi":"10.1007/s11766-022-4056-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science.</p></div>","PeriodicalId":67336,"journal":{"name":"Applied Mathematics-a Journal Of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods\",\"authors\":\"Aly R. Seadawy,&nbsp;Wafaa A. Albarakati,&nbsp;Asghar Ali,&nbsp;Dumitru Baleanu\",\"doi\":\"10.1007/s11766-022-4056-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science.</p></div>\",\"PeriodicalId\":67336,\"journal\":{\"name\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-022-4056-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-a Journal Of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-022-4056-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

本文用三种修正的数学方法研究了Vakhnenko-Parkes方程的一些新的行波解。得到了周期解和孤子解的三角解、双曲解和有理函数解。在规定的条件下,通过给每个解的参数赋特定的值,给出了一些解的图形表示,并与其他作者的解进行了比较,表明这些方法是解决应用科学中非线性问题的更有效、更有效和更适用的数学工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods

In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
10.00%
发文量
453
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信